Understanding Structure–Property Relationships of MoO3-Promoted Rh Catalysts for Syngas Conversion to Alcohols

化学 催化作用 氧合物 合成气 氢溢流 纳米颗粒 单层 吸附 离解(化学) 氧化铈 多相催化 甲醇 化学工程 无机化学 有机化学 工程类 生物化学
作者
Arun S. Asundi,Adam S. Hoffman,Pallavi Bothra,Alexey Boubnov,Fernando D. Vila,Nuoya Yang,Joseph A. Singh,Li Zeng,James A. Raiford,Frank Abild‐Pedersen,Simon R. Bare,Stacey F. Bent
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (50): 19655-19668 被引量:47
标识
DOI:10.1021/jacs.9b07460
摘要

Rh-based catalysts have shown promise for the direct conversion of syngas to higher oxygenates. Although improvements in higher oxygenate yield have been achieved by combining Rh with metal oxide promoters, details of the structure of the promoted catalyst and the role of the promoter in enhancing catalytic performance are not well understood. In this work, we show that MoO3-promoted Rh nanoparticles form a novel catalyst structure in which Mo substitutes into the Rh surface, leading to both a 66-fold increase in turnover frequency and an enhancement in oxygenate yield. By applying a combination of atomically controlled synthesis, in situ characterization, and theoretical calculations, we gain an understanding of the promoter-Rh interactions that govern catalytic performance for MoO3-promoted Rh. We use atomic layer deposition to modify Rh nanoparticles with monolayer-precise amounts of MoO3, with a high degree of control over the structure of the catalyst. Through in situ X-ray absorption spectroscopy, we find that the atomic structure of the catalytic surface under reaction conditions consists of Mo–OH species substituted into the surface of the Rh nanoparticles. Using density functional theory calculations, we identify two roles of MoO3: first, the presence of Mo–OH in the catalyst surface enhances CO dissociation and also stabilizes a methanol synthesis pathway not present in the unpromoted catalyst; and second, hydrogen spillover from Mo–OH sites to adsorbed species on the Rh surface enhances hydrogenation rates of reaction intermediates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的根号三完成签到 ,获得积分10
刚刚
刚刚
无聊的小懒虫完成签到 ,获得积分10
1秒前
布鲁爱思完成签到,获得积分10
6秒前
7秒前
12秒前
13秒前
思源应助lemon 1118采纳,获得30
13秒前
13秒前
wanci应助竺七采纳,获得10
16秒前
小蘑菇应助超级亿先采纳,获得10
17秒前
xm发布了新的文献求助10
17秒前
NexusExplorer应助yy采纳,获得10
18秒前
Syh关注了科研通微信公众号
18秒前
19秒前
zy发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
23秒前
23秒前
24秒前
Chloe发布了新的文献求助30
25秒前
shgd完成签到,获得积分10
25秒前
李j1发布了新的文献求助20
25秒前
lemon 1118发布了新的文献求助30
27秒前
端庄芾发布了新的文献求助10
27秒前
28秒前
29秒前
唯爱林发布了新的文献求助10
29秒前
zhonglv7应助Chloe采纳,获得10
29秒前
29秒前
重重发布了新的文献求助30
30秒前
永远有多远完成签到,获得积分10
30秒前
赘婿应助yes采纳,获得10
31秒前
31秒前
小二发布了新的文献求助10
34秒前
34秒前
罗先生完成签到,获得积分10
35秒前
lele关注了科研通微信公众号
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113