乙状窦函数
RSS
算法
计算机科学
人工智能
预处理器
核(代数)
回归
机器学习
数学
人工神经网络
统计
操作系统
组合数学
作者
Yu-Chun Wu,Chi‐Wai Chow,Yang Liu,Yun-Shen Lin,Chong-You Hong,Dong-Chang Lin,Shao-Hua Song,Chien-Hung Yeh
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2020-01-01
卷期号:8: 214269-214281
被引量:43
标识
DOI:10.1109/access.2020.3041192
摘要
In this work, we propose and demonstrate a received-signal-strength (RSS) based visiblelight-positioning (VLP) system using sigmoid function data preprocessing (SFDP) method; and apply it to two types of regression based machine learning algorithms; including the second-order linear regression machine learning (LRML) algorithm, and the kernel ridge regression machine learning (KRRML) algorithm.Experimental results indicate that the use of SFDP method can significantly improve the positioning accuracies in both the LRML and KRRML algorithms.Besides, the SFDP with KRRML scheme outperforms the other three schemes in terms of position accuracy, with the experimental average positioning error of about 2 cm in both horizontal and vertical directions.
科研通智能强力驱动
Strongly Powered by AbleSci AI