已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers

计算机科学 计算机辅助设计 忠诚 工程制图 高保真 人工智能 嵌入 过程(计算) 工程类 电信 操作系统 电气工程
作者
Jennifer Bone,Christopher M. Childs,Aditya Krishna Menon,Barnabás Póczos,Adam W. Feinberg,Philip R. LeDuc,Newell R. Washburn
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (12): 7021-7031 被引量:92
标识
DOI:10.1021/acsbiomaterials.0c00755
摘要

A hierarchical machine learning (HML) framework is presented that uses a small dataset to learn and predict the dominant build parameters necessary to print high-fidelity 3D features of alginate hydrogels. We examine the 3D printing of soft hydrogel forms printed with the freeform reversible embedding of suspended hydrogel method based on a CAD file that isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system variables ranging from print speed, flow rate, ink concentration to nozzle diameter were systematically varied to generate a small dataset of 48 prints. Prints were imaged and scored according to their dimensional similarity to the CAD file, and high print fidelity was defined as prints with less than 10% error from the CAD file. As a part of the HML framework, statistical inference was performed, using the least absolute shrinkage and selection operator to find the dominant variables that drive the error in the final prints. Model fit between the system parameters and print score was elucidated and improved by a parameterized middle layer of variable relationships which showed good performance between the predicted and observed data (R2 = 0.643). Optimization allowed for the prediction of build parameters that gave rise to high-fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity of different features printed within the same construct, showing the need for complex predictive design tools. A combination of known and discovered relationships was used to generate process maps for the 3D bioprinting designer that show error minimums based on the chosen input variables. Our approach offers a promising pathway toward scaling 3D bioprinting by optimizing print fidelity via learned build parameters that reduce the need for iterative testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhou发布了新的文献求助10
刚刚
流香完成签到 ,获得积分10
1秒前
忧心的笑南应助黑米粥采纳,获得10
2秒前
小蘑菇应助黑米粥采纳,获得10
2秒前
科研通AI6应助黑米粥采纳,获得10
2秒前
2秒前
忧心的笑南应助黑米粥采纳,获得10
2秒前
所所应助黑米粥采纳,获得10
2秒前
酷波er应助黑米粥采纳,获得10
2秒前
忧心的笑南应助黑米粥采纳,获得10
2秒前
传奇3应助黑米粥采纳,获得10
2秒前
可爱的函函应助黑米粥采纳,获得30
2秒前
酷波er应助黑米粥采纳,获得10
3秒前
3秒前
科研通AI2S应助叶航采纳,获得10
3秒前
冰激凌发布了新的文献求助10
4秒前
程小柒完成签到 ,获得积分10
6秒前
ZYP完成签到,获得积分10
6秒前
6秒前
7秒前
123发布了新的文献求助10
8秒前
秋蝶完成签到 ,获得积分10
10秒前
婉晴发布了新的文献求助10
11秒前
Liu完成签到 ,获得积分10
13秒前
刘浩完成签到,获得积分10
15秒前
椛鈊发布了新的文献求助10
16秒前
南宫若翠完成签到 ,获得积分10
16秒前
春山完成签到 ,获得积分10
17秒前
共享精神应助123采纳,获得10
17秒前
斯文败类应助laity采纳,获得10
20秒前
20秒前
22秒前
机智的芷天完成签到,获得积分10
22秒前
季博常完成签到,获得积分20
23秒前
24秒前
季博常发布了新的文献求助10
25秒前
慕青应助消烦员采纳,获得10
26秒前
26秒前
27秒前
lhy12345完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564710
关于积分的说明 14296681
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511