Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers

计算机科学 计算机辅助设计 忠诚 工程制图 高保真 人工智能 嵌入 过程(计算) 工程类 电信 操作系统 电气工程
作者
Jennifer Bone,Christopher M. Childs,Aditya Krishna Menon,Barnabás Póczos,Adam W. Feinberg,Philip R. LeDuc,Newell R. Washburn
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (12): 7021-7031 被引量:52
标识
DOI:10.1021/acsbiomaterials.0c00755
摘要

A hierarchical machine learning (HML) framework is presented that uses a small dataset to learn and predict the dominant build parameters necessary to print high-fidelity 3D features of alginate hydrogels. We examine the 3D printing of soft hydrogel forms printed with the freeform reversible embedding of suspended hydrogel method based on a CAD file that isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system variables ranging from print speed, flow rate, ink concentration to nozzle diameter were systematically varied to generate a small dataset of 48 prints. Prints were imaged and scored according to their dimensional similarity to the CAD file, and high print fidelity was defined as prints with less than 10% error from the CAD file. As a part of the HML framework, statistical inference was performed, using the least absolute shrinkage and selection operator to find the dominant variables that drive the error in the final prints. Model fit between the system parameters and print score was elucidated and improved by a parameterized middle layer of variable relationships which showed good performance between the predicted and observed data (R2 = 0.643). Optimization allowed for the prediction of build parameters that gave rise to high-fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity of different features printed within the same construct, showing the need for complex predictive design tools. A combination of known and discovered relationships was used to generate process maps for the 3D bioprinting designer that show error minimums based on the chosen input variables. Our approach offers a promising pathway toward scaling 3D bioprinting by optimizing print fidelity via learned build parameters that reduce the need for iterative testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助sun采纳,获得10
1秒前
KristenStewart完成签到,获得积分10
3秒前
过时的热狗完成签到,获得积分10
3秒前
点点完成签到,获得积分10
3秒前
Zxc发布了新的文献求助10
4秒前
涨芝士完成签到 ,获得积分10
5秒前
6秒前
无名欧文关注了科研通微信公众号
6秒前
科研123完成签到,获得积分10
8秒前
crescent完成签到 ,获得积分10
10秒前
无奈傲菡发布了新的文献求助10
10秒前
烟花应助123号采纳,获得10
13秒前
超帅的遥完成签到,获得积分10
13秒前
Zxc完成签到,获得积分10
14秒前
lbt完成签到 ,获得积分10
15秒前
yao完成签到 ,获得积分10
16秒前
16秒前
18秒前
19秒前
19秒前
doudou完成签到 ,获得积分10
19秒前
BCS完成签到,获得积分10
19秒前
领导范儿应助KYN采纳,获得10
19秒前
20秒前
独特的莫言完成签到,获得积分10
22秒前
lin发布了新的文献求助10
23秒前
aero完成签到 ,获得积分10
25秒前
123号完成签到,获得积分10
27秒前
充电宝应助TT采纳,获得10
29秒前
30秒前
30秒前
英姑应助荒野星辰采纳,获得10
32秒前
32秒前
YHY完成签到,获得积分10
34秒前
科研通AI5应助魏伯安采纳,获得10
34秒前
caoyy发布了新的文献求助10
34秒前
35秒前
36秒前
张喻235532完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849