Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers

计算机科学 计算机辅助设计 忠诚 工程制图 高保真 人工智能 嵌入 过程(计算) 工程类 电信 操作系统 电气工程
作者
Jennifer Bone,Christopher M. Childs,Aditya Krishna Menon,Barnabás Póczos,Adam W. Feinberg,Philip R. LeDuc,Newell R. Washburn
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (12): 7021-7031 被引量:92
标识
DOI:10.1021/acsbiomaterials.0c00755
摘要

A hierarchical machine learning (HML) framework is presented that uses a small dataset to learn and predict the dominant build parameters necessary to print high-fidelity 3D features of alginate hydrogels. We examine the 3D printing of soft hydrogel forms printed with the freeform reversible embedding of suspended hydrogel method based on a CAD file that isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system variables ranging from print speed, flow rate, ink concentration to nozzle diameter were systematically varied to generate a small dataset of 48 prints. Prints were imaged and scored according to their dimensional similarity to the CAD file, and high print fidelity was defined as prints with less than 10% error from the CAD file. As a part of the HML framework, statistical inference was performed, using the least absolute shrinkage and selection operator to find the dominant variables that drive the error in the final prints. Model fit between the system parameters and print score was elucidated and improved by a parameterized middle layer of variable relationships which showed good performance between the predicted and observed data (R2 = 0.643). Optimization allowed for the prediction of build parameters that gave rise to high-fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity of different features printed within the same construct, showing the need for complex predictive design tools. A combination of known and discovered relationships was used to generate process maps for the 3D bioprinting designer that show error minimums based on the chosen input variables. Our approach offers a promising pathway toward scaling 3D bioprinting by optimizing print fidelity via learned build parameters that reduce the need for iterative testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱朱完成签到 ,获得积分10
刚刚
957发布了新的文献求助10
刚刚
年少丶发布了新的文献求助20
1秒前
2秒前
Lyn完成签到 ,获得积分10
3秒前
科研小达人完成签到,获得积分20
3秒前
4秒前
李哈哈发布了新的文献求助10
4秒前
XYJ1发布了新的文献求助10
4秒前
4秒前
勤劳平彤完成签到,获得积分10
5秒前
5秒前
5秒前
ding应助臻灏采纳,获得10
6秒前
XUXU发布了新的文献求助10
6秒前
微凉完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
深情的玉米完成签到 ,获得积分10
8秒前
Jasper应助伍佰采纳,获得10
8秒前
9秒前
9秒前
苹果音响发布了新的文献求助10
10秒前
英吉利25发布了新的文献求助10
10秒前
风中天蓉发布了新的文献求助50
11秒前
羽宇发布了新的文献求助10
12秒前
LL完成签到 ,获得积分10
13秒前
14秒前
14秒前
liuaoo发布了新的文献求助10
14秒前
15秒前
田様应助ernest采纳,获得30
17秒前
17秒前
17秒前
17秒前
橙子abcy完成签到,获得积分10
17秒前
18秒前
卷发麦麦发布了新的文献求助10
18秒前
wanci应助lllcx采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753463
求助须知:如何正确求助?哪些是违规求助? 5481244
关于积分的说明 15378197
捐赠科研通 4892357
什么是DOI,文献DOI怎么找? 2631179
邀请新用户注册赠送积分活动 1579248
关于科研通互助平台的介绍 1535000