Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers

计算机科学 计算机辅助设计 忠诚 工程制图 高保真 人工智能 嵌入 过程(计算) 工程类 电信 操作系统 电气工程
作者
Jennifer Bone,Christopher M. Childs,Aditya Krishna Menon,Barnabás Póczos,Adam W. Feinberg,Philip R. LeDuc,Newell R. Washburn
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (12): 7021-7031 被引量:52
标识
DOI:10.1021/acsbiomaterials.0c00755
摘要

A hierarchical machine learning (HML) framework is presented that uses a small dataset to learn and predict the dominant build parameters necessary to print high-fidelity 3D features of alginate hydrogels. We examine the 3D printing of soft hydrogel forms printed with the freeform reversible embedding of suspended hydrogel method based on a CAD file that isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system variables ranging from print speed, flow rate, ink concentration to nozzle diameter were systematically varied to generate a small dataset of 48 prints. Prints were imaged and scored according to their dimensional similarity to the CAD file, and high print fidelity was defined as prints with less than 10% error from the CAD file. As a part of the HML framework, statistical inference was performed, using the least absolute shrinkage and selection operator to find the dominant variables that drive the error in the final prints. Model fit between the system parameters and print score was elucidated and improved by a parameterized middle layer of variable relationships which showed good performance between the predicted and observed data (R2 = 0.643). Optimization allowed for the prediction of build parameters that gave rise to high-fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity of different features printed within the same construct, showing the need for complex predictive design tools. A combination of known and discovered relationships was used to generate process maps for the 3D bioprinting designer that show error minimums based on the chosen input variables. Our approach offers a promising pathway toward scaling 3D bioprinting by optimizing print fidelity via learned build parameters that reduce the need for iterative testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芝麻芝麻开门完成签到,获得积分10
刚刚
风淡了发布了新的文献求助10
1秒前
显隐发布了新的文献求助10
1秒前
binz发布了新的文献求助10
1秒前
情怀应助HOHO采纳,获得10
2秒前
2秒前
bkagyin应助称心寒松采纳,获得10
2秒前
吴大打发布了新的文献求助10
2秒前
4秒前
5秒前
小次完成签到,获得积分10
6秒前
6秒前
右旋王小二完成签到,获得积分10
6秒前
搜集达人应助椿上春树采纳,获得10
7秒前
我是老大应助Biggest采纳,获得10
7秒前
8秒前
雪白问兰应助材料摆渡人采纳,获得10
8秒前
和你是甲烷完成签到 ,获得积分10
8秒前
8秒前
充电宝应助sisi采纳,获得10
8秒前
菜菜发布了新的文献求助10
8秒前
852应助粥粥粥粥粥采纳,获得10
9秒前
zai发布了新的文献求助10
9秒前
于采文完成签到,获得积分10
10秒前
10秒前
10秒前
十六发布了新的文献求助20
11秒前
11秒前
12秒前
Gigi完成签到,获得积分10
12秒前
13秒前
kiki完成签到,获得积分10
13秒前
称心寒松发布了新的文献求助10
13秒前
Yang完成签到,获得积分10
15秒前
Ansels发布了新的文献求助10
15秒前
haoxuesheng发布了新的文献求助10
16秒前
16秒前
17秒前
香蕉觅云应助song采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788