Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers

计算机科学 计算机辅助设计 忠诚 工程制图 高保真 人工智能 嵌入 过程(计算) 工程类 电信 操作系统 电气工程
作者
Jennifer Bone,Christopher M. Childs,Aditya Krishna Menon,Barnabás Póczos,Adam W. Feinberg,Philip R. LeDuc,Newell R. Washburn
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (12): 7021-7031 被引量:92
标识
DOI:10.1021/acsbiomaterials.0c00755
摘要

A hierarchical machine learning (HML) framework is presented that uses a small dataset to learn and predict the dominant build parameters necessary to print high-fidelity 3D features of alginate hydrogels. We examine the 3D printing of soft hydrogel forms printed with the freeform reversible embedding of suspended hydrogel method based on a CAD file that isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system variables ranging from print speed, flow rate, ink concentration to nozzle diameter were systematically varied to generate a small dataset of 48 prints. Prints were imaged and scored according to their dimensional similarity to the CAD file, and high print fidelity was defined as prints with less than 10% error from the CAD file. As a part of the HML framework, statistical inference was performed, using the least absolute shrinkage and selection operator to find the dominant variables that drive the error in the final prints. Model fit between the system parameters and print score was elucidated and improved by a parameterized middle layer of variable relationships which showed good performance between the predicted and observed data (R2 = 0.643). Optimization allowed for the prediction of build parameters that gave rise to high-fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity of different features printed within the same construct, showing the need for complex predictive design tools. A combination of known and discovered relationships was used to generate process maps for the 3D bioprinting designer that show error minimums based on the chosen input variables. Our approach offers a promising pathway toward scaling 3D bioprinting by optimizing print fidelity via learned build parameters that reduce the need for iterative testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千早爱音应助123采纳,获得10
1秒前
1秒前
chenmeimei2012完成签到 ,获得积分10
2秒前
2秒前
John发布了新的文献求助10
3秒前
4秒前
苟文锋发布了新的文献求助10
5秒前
6秒前
eating完成签到,获得积分10
7秒前
Windsea发布了新的文献求助10
8秒前
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
清脆天空发布了新的文献求助10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
及禾应助科研通管家采纳,获得20
8秒前
8秒前
浮游应助科研通管家采纳,获得10
9秒前
fyattojsk应助科研通管家采纳,获得20
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得30
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
谦让疾完成签到,获得积分20
11秒前
13秒前
Ava应助narcol采纳,获得30
13秒前
JamesPei应助Helium采纳,获得10
13秒前
清脆天空完成签到,获得积分10
15秒前
煜琪完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452