Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers

计算机科学 计算机辅助设计 忠诚 工程制图 高保真 人工智能 嵌入 过程(计算) 工程类 电信 操作系统 电气工程
作者
Jennifer Bone,Christopher M. Childs,Aditya Krishna Menon,Barnabás Póczos,Adam W. Feinberg,Philip R. LeDuc,Newell R. Washburn
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (12): 7021-7031 被引量:92
标识
DOI:10.1021/acsbiomaterials.0c00755
摘要

A hierarchical machine learning (HML) framework is presented that uses a small dataset to learn and predict the dominant build parameters necessary to print high-fidelity 3D features of alginate hydrogels. We examine the 3D printing of soft hydrogel forms printed with the freeform reversible embedding of suspended hydrogel method based on a CAD file that isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system variables ranging from print speed, flow rate, ink concentration to nozzle diameter were systematically varied to generate a small dataset of 48 prints. Prints were imaged and scored according to their dimensional similarity to the CAD file, and high print fidelity was defined as prints with less than 10% error from the CAD file. As a part of the HML framework, statistical inference was performed, using the least absolute shrinkage and selection operator to find the dominant variables that drive the error in the final prints. Model fit between the system parameters and print score was elucidated and improved by a parameterized middle layer of variable relationships which showed good performance between the predicted and observed data (R2 = 0.643). Optimization allowed for the prediction of build parameters that gave rise to high-fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity of different features printed within the same construct, showing the need for complex predictive design tools. A combination of known and discovered relationships was used to generate process maps for the 3D bioprinting designer that show error minimums based on the chosen input variables. Our approach offers a promising pathway toward scaling 3D bioprinting by optimizing print fidelity via learned build parameters that reduce the need for iterative testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诺诺完成签到 ,获得积分10
1秒前
2秒前
aaaa完成签到 ,获得积分10
3秒前
mont完成签到,获得积分10
4秒前
4秒前
123456789完成签到 ,获得积分10
4秒前
4秒前
7秒前
杨震发布了新的文献求助10
7秒前
8秒前
mont发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6应助柔弱的芷珍采纳,获得10
11秒前
12秒前
12秒前
暗中讨饭发布了新的文献求助10
12秒前
12秒前
chao发布了新的文献求助10
13秒前
晶婷发布了新的文献求助10
14秒前
杨震完成签到,获得积分10
16秒前
大方蜡烛发布了新的文献求助10
16秒前
奋斗青发布了新的文献求助10
18秒前
18秒前
19秒前
zhangxiaodan发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
明白放弃发布了新的文献求助10
26秒前
chao完成签到,获得积分10
26秒前
sia完成签到 ,获得积分10
30秒前
李健应助吃饭了吗123采纳,获得10
33秒前
小马甲应助明白放弃采纳,获得10
38秒前
不可以哦完成签到 ,获得积分10
38秒前
39秒前
39秒前
大方蜡烛完成签到,获得积分10
40秒前
42秒前
42秒前
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439