Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers

计算机科学 计算机辅助设计 忠诚 工程制图 高保真 人工智能 嵌入 过程(计算) 工程类 电信 操作系统 电气工程
作者
Jennifer Bone,Christopher M. Childs,Aditya Krishna Menon,Barnabás Póczos,Adam W. Feinberg,Philip R. LeDuc,Newell R. Washburn
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (12): 7021-7031 被引量:52
标识
DOI:10.1021/acsbiomaterials.0c00755
摘要

A hierarchical machine learning (HML) framework is presented that uses a small dataset to learn and predict the dominant build parameters necessary to print high-fidelity 3D features of alginate hydrogels. We examine the 3D printing of soft hydrogel forms printed with the freeform reversible embedding of suspended hydrogel method based on a CAD file that isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system variables ranging from print speed, flow rate, ink concentration to nozzle diameter were systematically varied to generate a small dataset of 48 prints. Prints were imaged and scored according to their dimensional similarity to the CAD file, and high print fidelity was defined as prints with less than 10% error from the CAD file. As a part of the HML framework, statistical inference was performed, using the least absolute shrinkage and selection operator to find the dominant variables that drive the error in the final prints. Model fit between the system parameters and print score was elucidated and improved by a parameterized middle layer of variable relationships which showed good performance between the predicted and observed data (R2 = 0.643). Optimization allowed for the prediction of build parameters that gave rise to high-fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity of different features printed within the same construct, showing the need for complex predictive design tools. A combination of known and discovered relationships was used to generate process maps for the 3D bioprinting designer that show error minimums based on the chosen input variables. Our approach offers a promising pathway toward scaling 3D bioprinting by optimizing print fidelity via learned build parameters that reduce the need for iterative testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小盆呐完成签到,获得积分10
1秒前
Accept关注了科研通微信公众号
1秒前
实验大牛完成签到,获得积分10
1秒前
SYLH应助嗯嗯采纳,获得30
1秒前
莫里完成签到,获得积分10
1秒前
独特的向日葵完成签到,获得积分10
1秒前
lz发布了新的文献求助10
2秒前
Enzo发布了新的文献求助10
2秒前
2秒前
菠菜发布了新的文献求助200
2秒前
格物致知发布了新的文献求助10
3秒前
动听锦程发布了新的文献求助10
3秒前
4秒前
wdy111应助左丘以云采纳,获得20
4秒前
4秒前
4秒前
糊辣鱼完成签到 ,获得积分10
5秒前
SYLH应助Ridley采纳,获得10
5秒前
6秒前
TWOTP完成签到,获得积分10
6秒前
Asystasia7完成签到,获得积分10
6秒前
6秒前
CATH发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
小蘑菇应助傻傻的夜柳采纳,获得30
8秒前
cxccx发布了新的文献求助10
8秒前
poker84完成签到,获得积分10
8秒前
9秒前
LLL完成签到,获得积分10
9秒前
Enzo完成签到,获得积分10
9秒前
充电宝应助tracer采纳,获得10
9秒前
倪斯芮完成签到 ,获得积分10
10秒前
tzj完成签到,获得积分10
11秒前
11秒前
11秒前
bluesmile完成签到,获得积分10
12秒前
怕孤单的羊完成签到,获得积分10
12秒前
鸡蛋包土豆儿完成签到,获得积分10
12秒前
风吹裤裆蛋蛋凉完成签到,获得积分10
13秒前
钱小二发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653