汉密尔顿-雅各比-贝尔曼方程
控制理论(社会学)
非线性系统
强化学习
计算机科学
有界函数
贝尔曼方程
人工神经网络
观察员(物理)
弹道
最优控制
跟踪误差
控制器(灌溉)
迭代学习控制
跟踪(教育)
功能(生物学)
数学优化
数学
控制(管理)
人工智能
生物
数学分析
物理
天文
进化生物学
量子力学
教育学
心理学
农学
作者
Mehdi Mohammadi,Mohammad Mehdi Arefi,Peyman Setoodeh,Okyay Kaynak
标识
DOI:10.1016/j.ins.2020.11.057
摘要
This article investigates the design of an optimal tracking controller for a class of nonlinear continuous-time systems with time-delay, mismatched external disturbances and input constraints. The technique of integral reinforcement learning (IRL) is utilized for determining the control input that optimizes an objective function. To enable the usage of an estimation of the external disturbances in the recursive objective function, a disturbance observer is designed. For the derivation of the optimal control input, a Hamilton-Jacobi-Bellman (HJB) equation is employed and solved using the iterative IRL algorithm. The proposed approach guarantees that in the presence of mismatched disturbances, the output of the time-delayed nonlinear system tracks the desired trajectory with bounded error. A critic neural network is designed for the implementation of the proposed approach. The efficiency of the method is illustrated by a simulation example.
科研通智能强力驱动
Strongly Powered by AbleSci AI