Theoretical computation of the electrocatalytic performance of CO2 reduction and hydrogen evolution reactions on graphdiyne monolayer supported precise number of copper atoms

催化作用 磁性 单层 材料科学 电催化剂 氧化还原 电化学 化学物理 化学 物理化学 无机化学 纳米技术 电极 凝聚态物理 物理 有机化学 冶金
作者
Zhen Feng,Yanan Tang,Yaqiang Ma,Yi Li,Yawei Dai,Weiguang Chen,Guang Su,Zhiying Song,Xianqi Dai
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:46 (7): 5378-5389 被引量:41
标识
DOI:10.1016/j.ijhydene.2020.11.102
摘要

CO2 reduction (CO2RR) and hydrogen evolution reactions (HER) are widely used in advanced energy conversion systems, which are urgently required low-cost and high efficient electrocatalysts to overcome the sluggish reaction kinetic and ultralow selectivity. Here, the single-, double-, and triple-atomic Cu embedded graphdiyne (Cu1-3@GDY) complexes have been systematically modeled by first-principles computations to evaluate the corresponding electric structures and catalytic performance. The results revealed that these Cu1-3@GDY monolayers possess high thermal stability by forming the firm Cu–C bonds. The Cu1-3@GDY complexes exhibit good electrical conductivity, which could promote the charge transfer in the electroreduction process. The electronic and magnetic interactions between key species (∗H, ∗COOH, and ∗OCHO) and Cu1-3@GDY complexes are responsible for the different catalytic performance of HER and CO2RR on different Cu1-3@GDY sheets. The Cu2@GDY complex could efficiently convert CO2 to CH4 with a rather low limiting potential of −0.42 V due to the spin magnetism of catalysts. The Cu1@GDY and Cu3@GDY exhibit excellent HER catalytic performance, and their limiting potentials are −0.18 and −0.02 V, respectively. Our findings not only provide a valuable avenue for the design of atomic metal catalysts toward various catalytic reactions but also highlight an important role of spin magnetism in electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜜桃小丸子完成签到 ,获得积分10
刚刚
传奇3应助yang采纳,获得10
1秒前
兮兮完成签到,获得积分10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
yohu应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
6秒前
喵小薇完成签到,获得积分20
6秒前
6秒前
8秒前
铲铲完成签到,获得积分10
8秒前
9秒前
pluto应助优美飞薇采纳,获得30
9秒前
玛格丽特完成签到,获得积分20
10秒前
迅速如柏完成签到,获得积分20
10秒前
酷波er应助momo采纳,获得10
10秒前
优雅的箴发布了新的文献求助10
12秒前
13秒前
DLY677完成签到,获得积分10
15秒前
wangtingyu发布了新的文献求助10
16秒前
迅速如柏发布了新的文献求助10
16秒前
儒雅的香之完成签到,获得积分10
17秒前
17秒前
Siney发布了新的文献求助10
19秒前
albertchan完成签到,获得积分10
19秒前
yang发布了新的文献求助10
19秒前
斯文败类应助玛格丽特采纳,获得10
19秒前
Benhnhk21完成签到,获得积分10
20秒前
格格巫完成签到 ,获得积分10
21秒前
21秒前
李健的小迷弟应助wangdong采纳,获得10
22秒前
~心若芷萱~完成签到 ,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312179
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521402
捐赠科研通 2620485
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115