Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright

纳米颗粒 激子 兴奋剂 镧系元素 转身(生物化学) 纳米技术 化学 材料科学 离子 光电子学 物理 凝聚态物理 生物化学 有机化学
作者
Sanyang Han,Renren Deng,Qifei Gu,Limeng Ni,Uyen Huynh,Jiangbin Zhang,Zhigao Yi,Baodan Zhao,Hiroyuki Tamura,Anton Pershin,Hui Xu,Zhiyuan Huang,Shahab Ahmad,Mojtaba Abdi‐Jalebi,Aditya Sadhanala,Ming Lee Tang,Artem A. Bakulin,David Beljonne,Xiaogang Liu,Akshay Rao
出处
期刊:Nature [Springer Nature]
卷期号:587 (7835): 594-599 被引量:192
标识
DOI:10.1038/s41586-020-2932-2
摘要

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron–hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin–orbit coupling9–11 or tuning of the singlet–triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle–molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide–triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research. Optically dark (non-emitting) triplet excitons on organic molecules may be rendered bright by coupling the molecules to lanthanide-doped nanoparticles, providing a way to control such excitons in optoelectronic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CC完成签到 ,获得积分10
1秒前
gao发布了新的文献求助10
1秒前
1秒前
2秒前
缓慢谷雪完成签到,获得积分10
2秒前
可爱凡波发布了新的文献求助10
2秒前
王哇噻发布了新的文献求助30
2秒前
犹豫耳机完成签到,获得积分10
3秒前
3秒前
GGB发布了新的文献求助10
3秒前
fei发布了新的文献求助30
4秒前
凌源枫完成签到 ,获得积分10
4秒前
可爱的函函应助杨蒙采纳,获得10
4秒前
zzz完成签到,获得积分10
4秒前
5秒前
斯文败类应助Sakura采纳,获得10
5秒前
Finley发布了新的文献求助10
5秒前
sue发布了新的文献求助10
5秒前
XX完成签到,获得积分10
6秒前
6秒前
大力蚂蚁发布了新的文献求助10
6秒前
luluan完成签到,获得积分10
8秒前
虚幻夜山发布了新的文献求助10
8秒前
8秒前
8秒前
852应助栀初采纳,获得10
8秒前
AmosLi727发布了新的文献求助10
9秒前
花鲨完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
10秒前
66发布了新的文献求助30
10秒前
soulking完成签到,获得积分10
11秒前
11秒前
FashionBoy应助gustavo采纳,获得10
11秒前
徐新军发布了新的文献求助10
13秒前
初心路发布了新的文献求助10
13秒前
Hello应助XX采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277