Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright

纳米颗粒 激子 兴奋剂 镧系元素 转身(生物化学) 纳米技术 化学 材料科学 离子 光电子学 物理 凝聚态物理 生物化学 有机化学
作者
Sanyang Han,Renren Deng,Qifei Gu,Limeng Ni,Uyen Huynh,Jiangbin Zhang,Zhigao Yi,Baodan Zhao,Hiroyuki Tamura,Anton Pershin,Hui Xu,Zhiyuan Huang,Shahab Ahmad,Mojtaba Abdi‐Jalebi,Aditya Sadhanala,Ming Lee Tang,Artem A. Bakulin,David Beljonne,Xiaogang Liu,Akshay Rao
出处
期刊:Nature [Springer Nature]
卷期号:587 (7835): 594-599 被引量:218
标识
DOI:10.1038/s41586-020-2932-2
摘要

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron–hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin–orbit coupling9–11 or tuning of the singlet–triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle–molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide–triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research. Optically dark (non-emitting) triplet excitons on organic molecules may be rendered bright by coupling the molecules to lanthanide-doped nanoparticles, providing a way to control such excitons in optoelectronic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ww完成签到,获得积分10
1秒前
Twonej举报dongdong求助涉嫌违规
2秒前
4秒前
ZL发布了新的文献求助10
5秒前
KEYANGOU完成签到,获得积分10
6秒前
奋斗的萝完成签到,获得积分10
6秒前
刘小天完成签到,获得积分10
6秒前
7秒前
哈哈哈发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
舒服的觅夏完成签到,获得积分10
11秒前
阔达乐荷完成签到,获得积分10
11秒前
11秒前
12秒前
沢雨发布了新的文献求助30
12秒前
大气魂幽发布了新的文献求助10
13秒前
球球发布了新的文献求助10
14秒前
大个应助123采纳,获得10
15秒前
科研通AI6.1应助朱信姿采纳,获得10
15秒前
15秒前
故意的白翠完成签到 ,获得积分10
15秒前
三人行发布了新的文献求助10
16秒前
阔达乐荷发布了新的文献求助10
17秒前
18秒前
AVA发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
飞蚁完成签到 ,获得积分10
19秒前
科研通AI6.1应助薇薇采纳,获得10
19秒前
20秒前
杨媛发布了新的文献求助10
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
LL完成签到 ,获得积分10
25秒前
痒痒硕鼠应助沉静白翠采纳,获得10
26秒前
汤沧海发布了新的文献求助80
26秒前
27秒前
黛薇完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787135
求助须知:如何正确求助?哪些是违规求助? 5697369
关于积分的说明 15471302
捐赠科研通 4915727
什么是DOI,文献DOI怎么找? 2645881
邀请新用户注册赠送积分活动 1593572
关于科研通互助平台的介绍 1547904