高光谱成像
光谱特征
能量(信号处理)
噪音(视频)
像素
电子能量损失谱
组分(热力学)
软件
计算机科学
GSM演进的增强数据速率
生物系统
模式识别(心理学)
人工智能
遥感
物理
电子
图像(数学)
数学
地质学
统计
热力学
生物
量子力学
程序设计语言
作者
Sirong Lu,David J. Smith
出处
期刊:Ultramicroscopy
[Elsevier]
日期:2020-11-01
卷期号:218: 113096-113096
被引量:2
标识
DOI:10.1016/j.ultramic.2020.113096
摘要
Extracting different spectral components and their corresponding concentrations from spectrum images is one of the key challenges for electron energy-loss spectroscopy analysis due to the large amount of data, differing spectral features and low signal-to-noise ratio. Here, an open-source software framework of hyperspectral unmixing for energy-loss near-edge fine structure analysis is proposed. This software determines the number of independent spectral components, the signature of each spectral component and the abundance of each spectral component in each pixel, without reference spectrum or prior knowledge of the datasets. This approach should be suitable for automated materials and chemical analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI