Interpretation of Depression Detection Models via Feature Selection Methods

特征选择 人工智能 计算机科学 韵律 模态(人机交互) 模式识别(心理学) 口译(哲学) 特征(语言学) 机器学习 眼球运动 选择(遗传算法) 语音识别 心理学 语言学 哲学 程序设计语言
作者
Sharifa Alghowinem,Tom Gedeon,Roland Goecke,Jeffrey F. Cohn,Gordon Parker
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (1): 133-152 被引量:48
标识
DOI:10.1109/taffc.2020.3035535
摘要

Given the prevalence of depression worldwide and its major impact on society, several studies employed artificial intelligence modelling to automatically detect and assess depression. However, interpretation of these models and cues are rarely discussed in detail in the AI community, but have received increased attention lately. In this article, we aim to analyse the commonly selected features using a proposed framework of several feature selection methods and their effect on the classification results, which will provide an interpretation of the depression detection model. The developed framework aggregates and selects the most promising features for modelling depression detection from 38 feature selection algorithms of different categories. Using three real-world depression datasets, 902 behavioural cues were extracted from speech behaviour, speech prosody, eye movement and head pose. To verify the generalisability of the proposed framework, we applied the entire process to depression datasets individually and when combined. The results from the proposed framework showed that speech behaviour features (e.g. pauses) are the most distinctive features of the depression detection model. From the speech prosody modality, the strongest feature groups were F0, HNR, formants, and MFCC, while for the eye activity modality they were left-right eye movement and gaze direction, and for the head modality it was yaw head movement. Modelling depression detection using the selected features (even though there are only 9 features) outperformed using all features in all the individual and combined datasets. Our feature selection framework did not only provide an interpretation of the model, but was also able to produce a higher accuracy of depression detection with a small number of features in varied datasets. This could help to reduce the processing time needed to extract features and creating the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溯风完成签到 ,获得积分10
1秒前
Mm完成签到,获得积分10
2秒前
Cat完成签到,获得积分0
3秒前
殷志远发布了新的文献求助10
4秒前
4秒前
4秒前
ZHANGJIAN完成签到 ,获得积分10
7秒前
BaooooooMao完成签到,获得积分10
7秒前
社会好公民完成签到,获得积分10
8秒前
yeyetomatoe完成签到,获得积分10
8秒前
标致冬日完成签到,获得积分10
8秒前
Dharma_Bums完成签到,获得积分10
8秒前
庸_完成签到 ,获得积分10
9秒前
9秒前
grnn完成签到,获得积分10
9秒前
研友_太叔紫夏完成签到,获得积分10
9秒前
Green完成签到,获得积分10
10秒前
10秒前
10秒前
zz发布了新的文献求助30
11秒前
S欣完成签到,获得积分10
11秒前
XXX完成签到,获得积分10
11秒前
12秒前
思源应助自信的若风采纳,获得10
12秒前
萍萍发布了新的文献求助10
12秒前
13秒前
LanDepp完成签到,获得积分10
13秒前
CipherSage应助冰雪物语采纳,获得10
13秒前
13秒前
3301完成签到,获得积分10
14秒前
14秒前
鄂海菡完成签到,获得积分10
14秒前
14秒前
爱静静应助木木采纳,获得10
16秒前
jaslek发布了新的文献求助10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
gj2221423应助科研通管家采纳,获得20
18秒前
桶装乐事应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011