Interpretation of Depression Detection Models via Feature Selection Methods

特征选择 人工智能 计算机科学 模式识别(心理学) 口译(哲学) 特征(语言学) 机器学习 萧条(经济学) 选择(遗传算法) 自然语言处理 心理学 语言学 哲学 宏观经济学 经济 程序设计语言
作者
Sharifa Alghowinem,Tom Gedeon,Roland Goecke,Jeffrey F. Cohn,Gordon Parker
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (1): 133-152 被引量:55
标识
DOI:10.1109/taffc.2020.3035535
摘要

Given the prevalence of depression worldwide and its major impact on society, several studies employed artificial intelligence modelling to automatically detect and assess depression. However, interpretation of these models and cues are rarely discussed in detail in the AI community, but have received increased attention lately. In this article, we aim to analyse the commonly selected features using a proposed framework of several feature selection methods and their effect on the classification results, which will provide an interpretation of the depression detection model. The developed framework aggregates and selects the most promising features for modelling depression detection from 38 feature selection algorithms of different categories. Using three real-world depression datasets, 902 behavioural cues were extracted from speech behaviour, speech prosody, eye movement and head pose. To verify the generalisability of the proposed framework, we applied the entire process to depression datasets individually and when combined. The results from the proposed framework showed that speech behaviour features (e.g. pauses) are the most distinctive features of the depression detection model. From the speech prosody modality, the strongest feature groups were F0, HNR, formants, and MFCC, while for the eye activity modality they were left-right eye movement and gaze direction, and for the head modality it was yaw head movement. Modelling depression detection using the selected features (even though there are only 9 features) outperformed using all features in all the individual and combined datasets. Our feature selection framework did not only provide an interpretation of the model, but was also able to produce a higher accuracy of depression detection with a small number of features in varied datasets. This could help to reduce the processing time needed to extract features and creating the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不如吃茶去完成签到,获得积分20
3秒前
hushan53完成签到,获得积分10
3秒前
飞虎完成签到,获得积分10
5秒前
starry南鸢完成签到 ,获得积分10
6秒前
风清扬完成签到,获得积分0
7秒前
Yeeeh完成签到 ,获得积分10
8秒前
桐桐应助刘铠瑜采纳,获得10
11秒前
爱撒娇的西装完成签到,获得积分10
11秒前
13秒前
tuanheqi应助努力的小韩采纳,获得30
16秒前
Jasper应助刘铠瑜采纳,获得10
17秒前
simon发布了新的文献求助10
18秒前
共享精神应助灵长类采纳,获得30
19秒前
超级大神完成签到,获得积分20
21秒前
mayzee完成签到,获得积分10
21秒前
李健的小迷弟应助HM采纳,获得10
22秒前
爆米花应助Hosea采纳,获得10
23秒前
风清扬发布了新的文献求助10
26秒前
自然的白风完成签到,获得积分10
26秒前
NexusExplorer应助hhhnn采纳,获得10
28秒前
Owen应助刘铠瑜采纳,获得10
31秒前
科研通AI6.2应助cccc采纳,获得10
31秒前
努力的小韩完成签到,获得积分10
34秒前
36秒前
隐形曼青应助芝麻开花采纳,获得10
37秒前
陈乔乔完成签到 ,获得积分10
38秒前
40秒前
友小猫发布了新的文献求助10
41秒前
boiqn完成签到,获得积分10
42秒前
42秒前
42秒前
Owen应助xbf采纳,获得10
45秒前
帅气的璎发布了新的文献求助30
45秒前
laz发布了新的文献求助10
46秒前
boiqn发布了新的文献求助10
48秒前
科研通AI2S应助hhhnn采纳,获得10
48秒前
科目三应助刘铠瑜采纳,获得10
51秒前
wumingzi完成签到,获得积分10
52秒前
53秒前
明理囧完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869356
求助须知:如何正确求助?哪些是违规求助? 6451604
关于积分的说明 15660816
捐赠科研通 4985139
什么是DOI,文献DOI怎么找? 2688283
邀请新用户注册赠送积分活动 1630756
关于科研通互助平台的介绍 1588831