Robustness of supply chain networks against underload cascading failures

稳健性(进化) 级联故障 备份 供应链 可靠性工程 计算机科学 业务 电力系统 运筹学 功率(物理) 工程类 生物化学 化学 物理 量子力学 数据库 营销 基因
作者
Qihui Yang,Caterina Scoglio,Don Gruenbacher
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:563: 125466-125466 被引量:37
标识
DOI:10.1016/j.physa.2020.125466
摘要

In today's global economy, supply chain (SC) entities have become increasingly interconnected with demand and supply relationships due to the need for strategic outsourcing. Such interdependence among firms not only increases efficiency but also creates more vulnerabilities in the system. Natural and human-made disasters such as floods and transport accidents may halt operations and lead to economic losses. Due to the interdependence among firms, the adverse effects of any disruption can be amplified and spread throughout the systems. This paper aims at studying the robustness of SC networks against cascading failures. Considering the upper and lower bound load constraints, i.e., inventory and cost, we examine the fraction of failed entities under load decrease and load fluctuation scenarios. The simulation results obtained from synthetic networks and a European supply chain network [1] both confirm that the recovery strategies of surplus inventory and backup suppliers often adopted in actual SCs can enhance the system robustness, compared with the system without the recovery process. In addition, the system is relatively robust against load fluctuations but is more fragile to demand shocks. For the underload-driven model without the recovery process, we found an occurrence of a discontinuous phase transition. Differently from other systems studied under overload cascading failures, this system is more robust for power-law distributions than uniform distributions of the lower bound parameter for the studied scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANT完成签到 ,获得积分10
2秒前
医疗实用废物完成签到,获得积分20
2秒前
2秒前
3秒前
蒋常伟关注了科研通微信公众号
3秒前
快乐游轮完成签到 ,获得积分10
4秒前
qqct完成签到,获得积分10
4秒前
zmx完成签到,获得积分20
5秒前
Sandy完成签到,获得积分10
5秒前
dandanpang完成签到 ,获得积分10
5秒前
6秒前
皓轩发布了新的文献求助10
6秒前
碧蓝的夏彤完成签到,获得积分10
6秒前
duduguai完成签到,获得积分10
6秒前
7秒前
汉堡包应助洁净艳一采纳,获得10
8秒前
9秒前
1234567890发布了新的文献求助10
10秒前
mirror发布了新的文献求助10
10秒前
10秒前
12秒前
打打应助dudu采纳,获得10
12秒前
粱如波发布了新的文献求助10
13秒前
矢思然发布了新的文献求助10
14秒前
共享精神应助backback采纳,获得10
14秒前
小马甲应助……采纳,获得10
15秒前
满意的涵菱完成签到,获得积分10
15秒前
哎呀呀发布了新的文献求助10
15秒前
标致小翠发布了新的文献求助10
16秒前
追佩奇十条街完成签到,获得积分10
16秒前
mmm发布了新的文献求助10
16秒前
ysy完成签到,获得积分10
16秒前
16秒前
zuofighting完成签到,获得积分10
18秒前
精明的海露应助自信凤凰采纳,获得50
18秒前
ina完成签到,获得积分10
18秒前
栗子呢呢呢完成签到 ,获得积分10
19秒前
充电宝应助绘图功能采纳,获得10
19秒前
19秒前
洁净艳一完成签到,获得积分10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835