First-photon imaging via a hybrid penalty

光子 物理 光学 光子计数 光子学 自发参量下转换
作者
Xiao Peng,Xin-Yu Zhao,Lijing Li,Ming-Jie Sun
出处
期刊:Photonics Research [The Optical Society]
卷期号:8 (3): 03000325- 被引量:2
标识
DOI:10.1364/prj.381516
摘要

First-photon imaging is a photon-efficient, computational imaging technique that reconstructs an image by recording only the first-photon arrival event at each spatial location and then optimizing the recorded photon information. The optimization algorithm plays a vital role in image formation. A natural scene containing spatial correlation can be reconstructed by maximum likelihood of all spatial locations constrained with a sparsity regularization penalty, and different penalties lead to different reconstructions. The l1-norm penalty of wavelet transform reconstructs major features but blurs edges and high-frequency details of the image. The total variational penalty preserves edges better; however, it induces a “staircase effect,” which degrades image quality. In this work, we proposed a hybrid penalty to reconstruct better edge features while suppressing the staircase effect by combining wavelet l1-norm and total variation into one penalty function. Results of numerical simulations indicate that the proposed hybrid penalty reconstructed better images, which have an averaged root mean square error of 12.83%, 5.68%, and 10.56% smaller than those of the images reconstructed by using only wavelet l1-norm penalty, total variation penalty, or recursive dyadic partitions method, respectively. Experimental results are in good agreement with the numerical ones, demonstrating the feasibility of the proposed hybrid penalty. Having been verified in a first-photon imaging system, the proposed hybrid penalty can be applied to other noise-removal optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵了完成签到,获得积分10
刚刚
lalala应助韶华采纳,获得10
1秒前
房咕咕发布了新的文献求助80
1秒前
叶祥完成签到,获得积分10
2秒前
科研通AI5应助破茧采纳,获得30
2秒前
疯狂小卷毛完成签到,获得积分10
2秒前
文献缺缺应助奋斗的觅夏采纳,获得30
2秒前
天气田田完成签到,获得积分10
3秒前
共享精神应助方墨采纳,获得10
3秒前
小沫灬李完成签到,获得积分10
3秒前
3秒前
Volta_zz发布了新的文献求助10
4秒前
lalala应助别偷我增肌粉采纳,获得20
4秒前
苗苗完成签到,获得积分10
5秒前
6秒前
liutao完成签到,获得积分10
6秒前
liang发布了新的文献求助30
6秒前
6秒前
如意冰棍发布了新的文献求助10
6秒前
小蘑菇应助nicolesong0614采纳,获得10
6秒前
JamesPei应助亚尔采纳,获得10
7秒前
rain123发布了新的文献求助10
7秒前
YI发布了新的文献求助20
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
Verapamil完成签到,获得积分10
9秒前
pass发布了新的文献求助10
10秒前
Rain发布了新的文献求助10
10秒前
科目三应助溪水哗哗采纳,获得10
10秒前
10秒前
11秒前
11秒前
vv应助元谷雪采纳,获得10
11秒前
12秒前
大个应助友好的储采纳,获得10
12秒前
天道酬勤发布了新的文献求助10
12秒前
xx发布了新的文献求助10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481500
求助须知:如何正确求助?哪些是违规求助? 3071626
关于积分的说明 9123103
捐赠科研通 2763366
什么是DOI,文献DOI怎么找? 1516451
邀请新用户注册赠送积分活动 701552
科研通“疑难数据库(出版商)”最低求助积分说明 700426