0447 ResTNet: A Robust End-to-End Deep Learning Approach to Sleep Staging of Self Applied Somnography Studies

计算机科学 稳健性(进化) 卷积神经网络 人工智能 睡眠(系统调用) 残余物 深度学习 睡眠阶段 脑电图 模式识别(心理学) 端到端原则 眼电学 机器学习 多导睡眠图 眼球运动 医学 算法 基因 操作系统 精神科 化学 生物化学
作者
S.Æ. Jónsson,Eysteinn Gunnlaugsson,E Finssonn,D L Loftsdóttir,G H Ólafsdóttir,Halla Helgadóttir,Jón S. Ágústsson
出处
期刊:Sleep [Oxford University Press]
卷期号:43 (Supplement_1): A171-A171 被引量:2
标识
DOI:10.1093/sleep/zsaa056.444
摘要

Abstract Introduction Sleep stage classifications are of central importance when diagnosing various sleep-related diseases. Performing a full PSG recording can be time-consuming and expensive, and often requires an overnight stay at a sleep clinic. Furthermore, the manual sleep staging process is tedious and subject to scorer variability. Here we present an end-to-end deep learning approach to robustly classify sleep stages from Self Applied Somnography (SAS) studies with frontal EEG and EOG signals. This setup allows patients to self-administer EEG and EOG leads in a home sleep study, which reduces cost and is more convenient for the patients. However, self-administration of the leads increases the risk of loose electrodes, which the algorithm must be robust to. The model structure was inspired by ResNet (He, Zhang, Ren, Sun, 2015), which has been highly successful in image recognition tasks. The ResTNet is comprised of the characteristic Residual blocks with an added Temporal component. Methods The ResTNet classifies sleep stages from the raw signals using convolutional neural network (CNN) layers, which avoids manual feature extraction, residual blocks, and a gated recurrent unit (GRU). This significantly reduces sleep stage prediction time and allows the model to learn more complex relations as the size of the training data increases. The model was developed and validated on over 400 manually scored sleep studies using the novel SAS setup. In developing the model, we used data augmentation techniques to simulate loose electrodes and distorted signals to increase model robustness with regards to missing signals and low quality data. Results The study shows that applying the robust ResTNet model to SAS studies gives accuracy > 0.80 and F1-score > 0.80. It outperforms our previous model which used hand-crafted features and achieves similar performance to a human scorer. Conclusion The ResTNet is fast, gives accurate predictions, and is robust to loose electrodes. The end-to-end model furthermore promises better performance with more data. Combined with the simplicity of the SAS setup, it is an attractive option for large-scale sleep studies. Support This work was supported by the Icelandic Centre for Research RANNÍS (175256-0611).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助沈格采纳,获得10
刚刚
西奥发布了新的文献求助10
刚刚
波宝撒发布了新的文献求助10
刚刚
yaoyinlin发布了新的文献求助10
刚刚
都暻秀女朋友完成签到,获得积分10
刚刚
BeautyZ发布了新的文献求助10
1秒前
zz321完成签到,获得积分10
1秒前
2秒前
2秒前
Hey发布了新的文献求助10
2秒前
小蘑菇应助转转采纳,获得30
2秒前
123456完成签到,获得积分10
2秒前
3秒前
3秒前
rainy77完成签到 ,获得积分10
4秒前
libra发布了新的文献求助10
4秒前
zfd完成签到,获得积分10
4秒前
情怀应助内向的小脑采纳,获得10
5秒前
5秒前
tong发布了新的文献求助10
5秒前
6秒前
ting完成签到,获得积分10
6秒前
QH完成签到,获得积分10
6秒前
7秒前
jiejie321完成签到,获得积分10
7秒前
8秒前
加油小李发布了新的文献求助10
8秒前
足下慵才发布了新的文献求助20
8秒前
2以李发布了新的文献求助10
8秒前
如意向真完成签到,获得积分10
8秒前
8秒前
老迟到的羊完成签到 ,获得积分10
9秒前
kong发布了新的文献求助10
9秒前
小谢不谢完成签到,获得积分10
9秒前
weiliuping完成签到 ,获得积分10
9秒前
棉花糖完成签到,获得积分10
9秒前
kaw完成签到,获得积分10
9秒前
彭于晏应助有魅力曼易采纳,获得10
9秒前
霍仁维思完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027