清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

0447 ResTNet: A Robust End-to-End Deep Learning Approach to Sleep Staging of Self Applied Somnography Studies

计算机科学 稳健性(进化) 卷积神经网络 人工智能 睡眠(系统调用) 残余物 深度学习 睡眠阶段 脑电图 模式识别(心理学) 端到端原则 眼电学 机器学习 多导睡眠图 眼球运动 医学 算法 基因 操作系统 精神科 化学 生物化学
作者
S.Æ. Jónsson,Eysteinn Gunnlaugsson,E Finssonn,D L Loftsdóttir,G H Ólafsdóttir,Halla Helgadóttir,Jón S. Ágústsson
出处
期刊:Sleep [Oxford University Press]
卷期号:43 (Supplement_1): A171-A171 被引量:2
标识
DOI:10.1093/sleep/zsaa056.444
摘要

Abstract Introduction Sleep stage classifications are of central importance when diagnosing various sleep-related diseases. Performing a full PSG recording can be time-consuming and expensive, and often requires an overnight stay at a sleep clinic. Furthermore, the manual sleep staging process is tedious and subject to scorer variability. Here we present an end-to-end deep learning approach to robustly classify sleep stages from Self Applied Somnography (SAS) studies with frontal EEG and EOG signals. This setup allows patients to self-administer EEG and EOG leads in a home sleep study, which reduces cost and is more convenient for the patients. However, self-administration of the leads increases the risk of loose electrodes, which the algorithm must be robust to. The model structure was inspired by ResNet (He, Zhang, Ren, Sun, 2015), which has been highly successful in image recognition tasks. The ResTNet is comprised of the characteristic Residual blocks with an added Temporal component. Methods The ResTNet classifies sleep stages from the raw signals using convolutional neural network (CNN) layers, which avoids manual feature extraction, residual blocks, and a gated recurrent unit (GRU). This significantly reduces sleep stage prediction time and allows the model to learn more complex relations as the size of the training data increases. The model was developed and validated on over 400 manually scored sleep studies using the novel SAS setup. In developing the model, we used data augmentation techniques to simulate loose electrodes and distorted signals to increase model robustness with regards to missing signals and low quality data. Results The study shows that applying the robust ResTNet model to SAS studies gives accuracy > 0.80 and F1-score > 0.80. It outperforms our previous model which used hand-crafted features and achieves similar performance to a human scorer. Conclusion The ResTNet is fast, gives accurate predictions, and is robust to loose electrodes. The end-to-end model furthermore promises better performance with more data. Combined with the simplicity of the SAS setup, it is an attractive option for large-scale sleep studies. Support This work was supported by the Icelandic Centre for Research RANNÍS (175256-0611).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
25秒前
31秒前
量子星尘发布了新的文献求助10
38秒前
47秒前
Liufgui应助紫熊采纳,获得10
49秒前
糟糕的翅膀完成签到,获得积分10
55秒前
1分钟前
1分钟前
bkagyin应助科研通管家采纳,获得30
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
乏味发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
k001boyxw完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Liufgui应助乏味采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
紫熊发布了新的文献求助10
3分钟前
apt完成签到 ,获得积分10
3分钟前
乏味发布了新的文献求助10
3分钟前
nnnick完成签到,获得积分0
3分钟前
woxinyouyou完成签到,获得积分0
4分钟前
乏味完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
方白秋完成签到,获得积分10
4分钟前
Frank完成签到 ,获得积分10
4分钟前
xiaoyi完成签到 ,获得积分10
4分钟前
4分钟前
紫熊发布了新的文献求助10
5分钟前
快乐谷蓝完成签到,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015320
求助须知:如何正确求助?哪些是违规求助? 3555265
关于积分的说明 11317937
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983