亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

0447 ResTNet: A Robust End-to-End Deep Learning Approach to Sleep Staging of Self Applied Somnography Studies

计算机科学 稳健性(进化) 卷积神经网络 人工智能 睡眠(系统调用) 残余物 深度学习 睡眠阶段 脑电图 模式识别(心理学) 端到端原则 眼电学 机器学习 多导睡眠图 眼球运动 医学 算法 基因 操作系统 精神科 化学 生物化学
作者
S.Æ. Jónsson,Eysteinn Gunnlaugsson,E Finssonn,D L Loftsdóttir,G H Ólafsdóttir,Halla Helgadóttir,Jón S. Ágústsson
出处
期刊:Sleep [Oxford University Press]
卷期号:43 (Supplement_1): A171-A171 被引量:2
标识
DOI:10.1093/sleep/zsaa056.444
摘要

Abstract Introduction Sleep stage classifications are of central importance when diagnosing various sleep-related diseases. Performing a full PSG recording can be time-consuming and expensive, and often requires an overnight stay at a sleep clinic. Furthermore, the manual sleep staging process is tedious and subject to scorer variability. Here we present an end-to-end deep learning approach to robustly classify sleep stages from Self Applied Somnography (SAS) studies with frontal EEG and EOG signals. This setup allows patients to self-administer EEG and EOG leads in a home sleep study, which reduces cost and is more convenient for the patients. However, self-administration of the leads increases the risk of loose electrodes, which the algorithm must be robust to. The model structure was inspired by ResNet (He, Zhang, Ren, Sun, 2015), which has been highly successful in image recognition tasks. The ResTNet is comprised of the characteristic Residual blocks with an added Temporal component. Methods The ResTNet classifies sleep stages from the raw signals using convolutional neural network (CNN) layers, which avoids manual feature extraction, residual blocks, and a gated recurrent unit (GRU). This significantly reduces sleep stage prediction time and allows the model to learn more complex relations as the size of the training data increases. The model was developed and validated on over 400 manually scored sleep studies using the novel SAS setup. In developing the model, we used data augmentation techniques to simulate loose electrodes and distorted signals to increase model robustness with regards to missing signals and low quality data. Results The study shows that applying the robust ResTNet model to SAS studies gives accuracy > 0.80 and F1-score > 0.80. It outperforms our previous model which used hand-crafted features and achieves similar performance to a human scorer. Conclusion The ResTNet is fast, gives accurate predictions, and is robust to loose electrodes. The end-to-end model furthermore promises better performance with more data. Combined with the simplicity of the SAS setup, it is an attractive option for large-scale sleep studies. Support This work was supported by the Icelandic Centre for Research RANNÍS (175256-0611).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LouieHuang完成签到,获得积分20
11秒前
22秒前
郜南烟发布了新的文献求助10
27秒前
wanci应助郜南烟采纳,获得10
38秒前
上官若男应助zhangyimg采纳,获得10
43秒前
47秒前
Lorin完成签到 ,获得积分10
51秒前
1分钟前
zhangyimg发布了新的文献求助10
1分钟前
科目三应助zhangyimg采纳,获得10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
圆圆的波仔发布了新的文献求助100
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
郗妫完成签到,获得积分10
2分钟前
3分钟前
郜南烟发布了新的文献求助10
4分钟前
Venus完成签到 ,获得积分10
5分钟前
在水一方应助chenyuns采纳,获得30
5分钟前
JACk完成签到 ,获得积分10
5分钟前
6分钟前
chenyuns发布了新的文献求助30
6分钟前
爱静静应助李伟采纳,获得10
6分钟前
6分钟前
zhangyimg发布了新的文献求助10
6分钟前
7分钟前
郜南烟发布了新的文献求助10
7分钟前
斯文败类应助郜南烟采纳,获得10
7分钟前
思源应助chenyuns采纳,获得20
7分钟前
Akim应助chenyuns采纳,获得20
7分钟前
领导范儿应助圆圆的波仔采纳,获得10
8分钟前
9分钟前
9分钟前
李爱国应助怕孤单的灵寒采纳,获得10
9分钟前
圆圆的波仔完成签到,获得积分10
9分钟前
9分钟前
9分钟前
怕孤单的灵寒完成签到,获得积分20
9分钟前
9分钟前
chenyuns发布了新的文献求助20
9分钟前
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826621
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527