Magneto-electronic properties, carrier mobility and strain effects of InSe nanoribbon

凝聚态物理 材料科学 磁性 磁矩 费米能级 自旋电子学 铁磁性 之字形的 自旋极化 半金属 电子迁移率 带隙 未成对电子 电子 光电子学 物理 几何学 数学 量子力学
作者
Yawei Li,Zhenhua Zhang,Zhi‐Qiang Fan,R L Zhou
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:32 (1): 015303-015303 被引量:5
标识
DOI:10.1088/1361-648x/ab4293
摘要

The monolayer InSe has been successfully fabricated recently and studied intensely. Here, we investigate the geometrical stability and various physical properties such as electronic and magnetic feature, carrier mobility and strain effects for InSe nanoribbons. Our calculations show that armchair nanoribbons, regardless of the bare-edged or H-saturated ones, are semiconductors with an indirect bandgaps, but the bandgap size is increased greatly by H-saturation. Their electron mobility is predicted to be moderately large (from ~102 to ~103 cm2 V-1 s-1) with the holes being less mobile for wider ribbons, and the carrier polarity phenomenon becomes more prominently for H-saturation. The zigzag InSe nanoribbons are found to be magnetic metals with a bigger magnetic moment and the ferromagnetic ground state at the single edge. The magnetism stems from unpaired electrons at the In-rich edge. More interestingly, it is found that the externally applied mechanical strain can effectively tune the spin polarization efficiency at the Fermi level to two stepwise stages, suggesting that the strain can act as a tool for developing a mechanical switch to control spin-polarized transport under lower bias. The detailed analysis suggests that this strain-tuning mechanism can be attributed to the ionic and covalent bond-configuration competition due to the strain-induced bond-length alterations, which leads to the unpaired electron redistribution in magnetic atoms or vanishing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
共享精神应助萌酱采纳,获得10
1秒前
zxwz发布了新的文献求助10
1秒前
猪猪hero应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
Ava应助xuan采纳,获得10
1秒前
酷波er应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
Jared应助xuan采纳,获得10
1秒前
小羊完成签到 ,获得积分10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
田様应助xuan采纳,获得10
1秒前
独特的追命应助xuan采纳,获得10
1秒前
赘婿应助xuan采纳,获得10
1秒前
1秒前
hgm完成签到 ,获得积分10
2秒前
3秒前
Liu完成签到,获得积分10
3秒前
lmz发布了新的文献求助10
3秒前
山头虎发布了新的文献求助30
3秒前
香蕉觅云应助康师傅采纳,获得10
3秒前
烟花应助CMUSK采纳,获得10
4秒前
4秒前
SciGPT应助积极行天采纳,获得10
4秒前
4秒前
4秒前
文静曼安发布了新的文献求助10
5秒前
lzxlzxlzx发布了新的文献求助10
5秒前
浮游应助小巧的柚子采纳,获得10
6秒前
听雨秀才完成签到,获得积分20
6秒前
6秒前
6秒前
Leon_nomoreLess完成签到 ,获得积分10
6秒前
研友_Z30Kz8完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108