As one of the most important phenomena in crystallization, the crystal nucleation process has always been the focus of research. In this work, influences of pre-assembly species and the desolvation process on the crystal nucleation process were studied. p -Nitrobenzoic acid (PNBA) was taken as a model compound to investigate the relationship between solution chemistry and nucleation kinetics in seven different solvents. One unsolvated form and four solvates of PNBA were obtained and one of the solvates was newly discovered. The nucleation behaviours and nucleation kinetics of PNBA in the seven solvents were studied and analyzed. Density functional theory (DFT) and solvation energy calculation were adopted to evaluate the strength of solute–solvent interactions. Vibrational spectroscopy combined with molecular simulation was applied to reveal the pre-assembly species in the solution. Based on these results, a comprehensive understanding of the relationship between molecular structure, crystal structure, solution chemistry and nucleation dynamics was proposed and discussed. It was found that the structural similarity between solution chemistry and crystal structure, the interaction between specific sites and the overall strength of solvation will jointly affect the nucleation process.