A Unified Link Prediction Framework for Predicting Arbitrary Relations in Heterogeneous Academic Networks

计算机科学 关系(数据库) 可扩展性 相关性(法律) 度量(数据仓库) 任务(项目管理) 相似性(几何) 路径(计算) 链接(几何体) 数据挖掘 人工智能 理论计算机科学 机器学习 图像(数学) 数据库 经济 管理 程序设计语言 法学 计算机网络 政治学
作者
Meilian Lu,Xudan Wei,Danna Ye,Yinlong Dai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 124967-124987 被引量:8
标识
DOI:10.1109/access.2019.2939172
摘要

Most of the existing link prediction methods for heterogeneous academic networks can only predict one or two specific relation types rather than arbitrary relation types. Although several recently proposed methods have involved multi-relational prediction problems, they do not comprehensively consider the rich semantic or temporal information of heterogeneous academic networks. Considering that researchers may have diverse requirements for different types of academic resources, in this study, we propose a new unified link prediction framework (UniLPF) for arbitrary types of academic relations. First, a weighted and directed heterogeneous academic network containing rich academic objects and relations is constructed. Then, an automatic meta-path searching method is proposed to extract the meta-paths for arbitrary prediction tasks. Two meta-path based object similarity measures combining temporal information and content relevance are also proposed to measure the features of the meta-paths. Finally, a pervasive link prediction model is built, which can be embodied based on an arbitrarily specified prediction task and the corresponding meta-path features. Extensive experiments for predicting various relation types with practical significance are conducted on a large-scale Microsoft Academic dataset. The experimental results demonstrate that our proposed UniLPF framework can predict arbitrary specified academic relations, and outperforms the comparison methods in terms of F-measure, accuracy, AUC and ROC. In addition, the time scalability experiments prove that UniLPF also achieves good performance for predicting the academic relations over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawn发布了新的文献求助10
刚刚
刚刚
max寒发布了新的文献求助10
刚刚
科研通AI2S应助Beira采纳,获得30
1秒前
草莓布丁完成签到,获得积分10
1秒前
2秒前
3秒前
生动驳发布了新的文献求助10
3秒前
4秒前
lbm完成签到,获得积分10
4秒前
4秒前
眼睛大的从雪完成签到,获得积分10
5秒前
英姑应助程勋航采纳,获得10
5秒前
5秒前
装好心完成签到,获得积分10
6秒前
研友_VZG7GZ应助GUGU采纳,获得10
6秒前
传奇3应助max寒采纳,获得10
7秒前
8秒前
充电宝应助sugar采纳,获得10
9秒前
vincent发布了新的文献求助10
9秒前
俭朴的向薇完成签到,获得积分10
10秒前
11秒前
星辰大海应助苏御丶云泽采纳,获得10
12秒前
生动驳完成签到,获得积分10
12秒前
Aurora完成签到,获得积分10
12秒前
13秒前
14秒前
领导范儿应助锦鲤嘟嘟嘟采纳,获得10
14秒前
123应助jiao采纳,获得10
16秒前
学习是头等大事完成签到,获得积分10
16秒前
16秒前
Frank应助overlood采纳,获得10
17秒前
研友_ngk5zn发布了新的文献求助30
18秒前
19秒前
20秒前
20秒前
星辰大海应助流小力采纳,获得30
21秒前
21秒前
FashionBoy应助积极钢笔采纳,获得10
22秒前
22秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178398
求助须知:如何正确求助?哪些是违规求助? 2829406
关于积分的说明 7971307
捐赠科研通 2490777
什么是DOI,文献DOI怎么找? 1327858
科研通“疑难数据库(出版商)”最低求助积分说明 635338
版权声明 602904