A Unified Link Prediction Framework for Predicting Arbitrary Relations in Heterogeneous Academic Networks

计算机科学 关系(数据库) 可扩展性 相关性(法律) 度量(数据仓库) 任务(项目管理) 相似性(几何) 路径(计算) 链接(几何体) 数据挖掘 人工智能 理论计算机科学 机器学习 图像(数学) 计算机网络 管理 数据库 政治学 法学 经济 程序设计语言
作者
Meilian Lu,Xudan Wei,Danna Ye,Yinlong Dai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 124967-124987 被引量:8
标识
DOI:10.1109/access.2019.2939172
摘要

Most of the existing link prediction methods for heterogeneous academic networks can only predict one or two specific relation types rather than arbitrary relation types. Although several recently proposed methods have involved multi-relational prediction problems, they do not comprehensively consider the rich semantic or temporal information of heterogeneous academic networks. Considering that researchers may have diverse requirements for different types of academic resources, in this study, we propose a new unified link prediction framework (UniLPF) for arbitrary types of academic relations. First, a weighted and directed heterogeneous academic network containing rich academic objects and relations is constructed. Then, an automatic meta-path searching method is proposed to extract the meta-paths for arbitrary prediction tasks. Two meta-path based object similarity measures combining temporal information and content relevance are also proposed to measure the features of the meta-paths. Finally, a pervasive link prediction model is built, which can be embodied based on an arbitrarily specified prediction task and the corresponding meta-path features. Extensive experiments for predicting various relation types with practical significance are conducted on a large-scale Microsoft Academic dataset. The experimental results demonstrate that our proposed UniLPF framework can predict arbitrary specified academic relations, and outperforms the comparison methods in terms of F-measure, accuracy, AUC and ROC. In addition, the time scalability experiments prove that UniLPF also achieves good performance for predicting the academic relations over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
没有昵称发布了新的文献求助10
3秒前
灵巧的惜灵应助寂寞的灵采纳,获得10
5秒前
6秒前
彭于晏应助监督導部采纳,获得10
6秒前
所所应助小河采纳,获得20
6秒前
阳光完成签到,获得积分10
7秒前
烟花应助李y梅子采纳,获得10
7秒前
8秒前
全若之完成签到,获得积分20
8秒前
天天快乐应助安蓝采纳,获得10
8秒前
8秒前
懒羊羊发布了新的文献求助10
9秒前
奇拉维特完成签到 ,获得积分10
9秒前
yuyukeke完成签到,获得积分10
10秒前
huh完成签到,获得积分10
11秒前
聪慧代天发布了新的文献求助10
12秒前
12秒前
栗栗子完成签到,获得积分10
12秒前
lllll发布了新的文献求助10
13秒前
Lm完成签到,获得积分10
14秒前
努力哥完成签到,获得积分10
15秒前
星点点发布了新的文献求助10
15秒前
lay完成签到,获得积分10
16秒前
16秒前
liuxiner发布了新的文献求助10
17秒前
有且仅有发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
19秒前
爆米花完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
23秒前
坦率的夜玉完成签到,获得积分10
23秒前
23秒前
24秒前
在水一方应助寂寞的灵采纳,获得10
24秒前
Hanah完成签到,获得积分10
25秒前
Mu发布了新的文献求助20
25秒前
花生仔应助薯片采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597