A Unified Link Prediction Framework for Predicting Arbitrary Relations in Heterogeneous Academic Networks

计算机科学 关系(数据库) 可扩展性 相关性(法律) 度量(数据仓库) 任务(项目管理) 相似性(几何) 路径(计算) 链接(几何体) 数据挖掘 人工智能 理论计算机科学 机器学习 图像(数学) 计算机网络 管理 数据库 政治学 法学 经济 程序设计语言
作者
Meilian Lu,Xudan Wei,Danna Ye,Yinlong Dai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 124967-124987 被引量:8
标识
DOI:10.1109/access.2019.2939172
摘要

Most of the existing link prediction methods for heterogeneous academic networks can only predict one or two specific relation types rather than arbitrary relation types. Although several recently proposed methods have involved multi-relational prediction problems, they do not comprehensively consider the rich semantic or temporal information of heterogeneous academic networks. Considering that researchers may have diverse requirements for different types of academic resources, in this study, we propose a new unified link prediction framework (UniLPF) for arbitrary types of academic relations. First, a weighted and directed heterogeneous academic network containing rich academic objects and relations is constructed. Then, an automatic meta-path searching method is proposed to extract the meta-paths for arbitrary prediction tasks. Two meta-path based object similarity measures combining temporal information and content relevance are also proposed to measure the features of the meta-paths. Finally, a pervasive link prediction model is built, which can be embodied based on an arbitrarily specified prediction task and the corresponding meta-path features. Extensive experiments for predicting various relation types with practical significance are conducted on a large-scale Microsoft Academic dataset. The experimental results demonstrate that our proposed UniLPF framework can predict arbitrary specified academic relations, and outperforms the comparison methods in terms of F-measure, accuracy, AUC and ROC. In addition, the time scalability experiments prove that UniLPF also achieves good performance for predicting the academic relations over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
虚拟的柠檬完成签到,获得积分10
1秒前
英俊的铭应助jiangmax采纳,获得10
2秒前
好天气发布了新的文献求助10
2秒前
Fly完成签到,获得积分10
3秒前
Owen应助霸气冰露采纳,获得10
4秒前
5秒前
细腻鸭子完成签到,获得积分10
5秒前
情怀应助立青采纳,获得30
6秒前
领导范儿应助生动宛筠采纳,获得10
7秒前
Owen应助20采纳,获得10
9秒前
唯梦完成签到 ,获得积分10
9秒前
10秒前
科研通AI6应助幽默天真采纳,获得10
10秒前
10秒前
闻风听雨完成签到,获得积分10
10秒前
所所应助wc采纳,获得10
11秒前
田様应助恩恩吴采纳,获得10
12秒前
调皮的巧凡完成签到,获得积分10
13秒前
14秒前
英姑应助萝卜采纳,获得10
15秒前
15秒前
15秒前
bkagyin应助MMM采纳,获得10
16秒前
晓豪发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
小语丝发布了新的文献求助10
18秒前
细腻的枫叶完成签到 ,获得积分10
19秒前
jiangmax发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
努力毕业ing完成签到,获得积分10
20秒前
LLLi完成签到,获得积分20
22秒前
暴躁的黎云完成签到,获得积分10
22秒前
任润发布了新的文献求助10
22秒前
Atlantis发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301