Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules

医学 肝细胞癌 神经组阅片室 放射科 队列 活检 回顾性队列研究 介入放射学 内科学 神经学 精神科
作者
Fatima‐Zohra Mokrane,Lin Lü,Adrien Vavasseur,Philippe Otal,Jean‐Marie Péron,Lyndon Luk,Hao Yang,Samy Ammari,Yvonne M. Saenger,Hervé Rousseau,Binsheng Zhao,Lawrence H. Schwartz,Laurent Dercle
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (1): 558-570 被引量:161
标识
DOI:10.1007/s00330-019-06347-w
摘要

To enhance clinician’s decision-making by diagnosing hepatocellular carcinoma (HCC) in cirrhotic patients with indeterminate liver nodules using quantitative imaging features extracted from triphasic CT scans. We retrospectively analyzed 178 cirrhotic patients from 27 institutions, with biopsy-proven liver nodules classified as indeterminate using the European Association for the Study of the Liver (EASL) guidelines. Patients were randomly assigned to a discovery cohort (142 patients (pts.)) and a validation cohort (36 pts.). Each liver nodule was segmented on each phase of triphasic CT scans, and 13,920 quantitative imaging features (12 sets of 1160 features each reflecting the phenotype at one single phase or its change between two phases) were extracted. Using machine-learning techniques, the signature was trained and calibrated (discovery cohort), and validated (validation cohort) to classify liver nodules as HCC vs. non-HCC. Effects of segmentation and contrast enhancement quality were also evaluated. Patients were predominantly male (88%) and CHILD A (65%). Biopsy was positive for HCC in 77% of patients. LI-RADS scores were not different between HCC and non-HCC patients. The signature included a single radiomics feature quantifying changes between arterial and portal venous phases: DeltaV-A_DWT1_LL_Variance-2D and reached area under the receiver operating characteristic curve (AUC) of 0.70 (95%CI 0.61–0.80) and 0.66 (95%CI 0.64–0.84) in discovery and validation cohorts, respectively. The signature was influenced neither by segmentation nor by contrast enhancement. A signature using a single feature was validated in a multicenter retrospective cohort to diagnose HCC in cirrhotic patients with indeterminate liver nodules. Artificial intelligence could enhance clinicians’ decision by identifying a subgroup of patients with high HCC risk. • In cirrhotic patients with visually indeterminate liver nodules, expert visual assessment using current guidelines cannot accurately differentiate HCC from differential diagnoses. Current clinical protocols do not entail biopsy due to procedural risks. Radiomics can be used to non-invasively diagnose HCC in cirrhotic patients with indeterminate liver nodules, which could be leveraged to optimize patient management. • Radiomics features contributing the most to a better characterization of visually indeterminate liver nodules include changes in nodule phenotype between arterial and portal venous phases: the “washout” pattern appraised visually using EASL and EASL guidelines. • A clinical decision algorithm using radiomics could be applied to reduce the rate of cirrhotic patients requiring liver biopsy (EASL guidelines) or wait-and-see strategy (AASLD guidelines) and therefore improve their management and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
1秒前
杨秋月完成签到,获得积分10
1秒前
汉桑波欸完成签到,获得积分10
1秒前
共享精神应助抚琴祛魅采纳,获得30
1秒前
2秒前
单单来迟完成签到,获得积分10
2秒前
完美世界应助发发发采纳,获得10
2秒前
科研通AI6应助wp采纳,获得10
2秒前
huakun发布了新的文献求助10
4秒前
耕云钓月完成签到,获得积分10
4秒前
4秒前
你的发布了新的文献求助10
5秒前
CR7应助grace135采纳,获得20
6秒前
6秒前
科研通AI5应助刻苦的雨莲采纳,获得30
6秒前
和谐的素完成签到,获得积分10
7秒前
7秒前
8秒前
iNk应助洛尘采纳,获得20
8秒前
8秒前
量子星尘发布了新的文献求助50
8秒前
Yuanyuan发布了新的文献求助10
10秒前
yyj完成签到,获得积分10
10秒前
Killor完成签到,获得积分10
11秒前
64658应助云赵采纳,获得10
11秒前
12秒前
斯文败类应助mm采纳,获得10
12秒前
Moon发布了新的文献求助10
12秒前
hilapo发布了新的文献求助10
13秒前
13秒前
wyb发布了新的文献求助10
14秒前
17秒前
19秒前
量子星尘发布了新的文献求助50
19秒前
树池完成签到,获得积分10
19秒前
清新的涵双完成签到,获得积分10
20秒前
小学生发布了新的文献求助50
22秒前
22秒前
22秒前
kris完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310