Dispersion and rheology of nanofluids with various concentrations of organic modified nanoparticles: Modifier and solvent effects

纳米流体 流变学 材料科学 粘度 纳米颗粒 化学工程 色散(光学) 剪切减薄 复合材料 纳米技术 光学 物理 工程类
作者
Muhammad Zamir Hossain,Daisuke Hojo,Akira Yoko,Gimyeong Seong,Nobuaki Aoki,Takaaki Tomai,Seiichi Takami,Tadafumi Adschiri
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:583: 123876-123876 被引量:20
标识
DOI:10.1016/j.colsurfa.2019.123876
摘要

This article describes the relation between nanofluid viscosity and nanoparticle dispersibility. The rheological characteristics of dispersions of metal oxide nanoparticles was studied with covalently bonded organic molecules on their surfaces. Using a supercritical method, surface modification of the metal oxide nanoparticles with organic ligands was accomplished, thereby producing nanofluids of various kinds. By changing both the solvent and surface modifiers, the relation between the dispersive behavior and rheological characteristics of nanofluids was elucidated over widely various concentrations up to 30 vol.%. Then the nanofluid dispersibility was assessed in terms of their transparency, determined using ultraviolet – visible light spectroscopy, to correlate it to the nanofluid rheological behavior. Results reveal that transparent nanofluids behave as Newtonian fluids. Moreover, their relative viscosities converge to a certain viscosity range irrespective of the surface modifier and solvent type, whereas the non-transparent nanofluid viscosities are scattered above the transparent nanofluid viscosity range. After shear thinning, which is observed only for non-transparent nanofluids, the non-transparent nanofluid viscosity decreases and approaches the transparent nanofluid viscosity range. Furthermore, shear thickening occurs only at high nanoparticle concentrations of more than 23 vol.%, fundamentally independent of dispersibility. These findings provide a comprehensive picture of the relation between the nanofluid rheology and dispersive behavior, which is useful for nanofluid design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LmY7YL发布了新的文献求助10
刚刚
英俊的铭应助wkf218416采纳,获得10
1秒前
林子青完成签到,获得积分10
2秒前
3秒前
shitzu完成签到 ,获得积分10
3秒前
淡然伊发布了新的文献求助10
4秒前
oasissmz完成签到,获得积分10
5秒前
6秒前
热心又蓝完成签到,获得积分10
6秒前
7秒前
魔幻的访天完成签到,获得积分10
7秒前
7秒前
研友_LmY7YL完成签到,获得积分10
9秒前
迷路的含桃完成签到 ,获得积分10
10秒前
乖加油完成签到,获得积分10
10秒前
ysnlt2024发布了新的文献求助10
11秒前
小张发布了新的文献求助10
12秒前
秦慧萍发布了新的文献求助10
14秒前
1182647689183发布了新的文献求助10
14秒前
songzehua完成签到,获得积分10
15秒前
16秒前
16秒前
凉白开完成签到,获得积分10
16秒前
可爱可兰完成签到 ,获得积分10
17秒前
Guai完成签到 ,获得积分10
17秒前
17秒前
小马甲应助科研通管家采纳,获得10
18秒前
Lojong完成签到,获得积分10
18秒前
JamesPei应助科研通管家采纳,获得30
18秒前
19秒前
芋泥啵啵发布了新的文献求助10
20秒前
玉yu完成签到 ,获得积分10
20秒前
加油的老赵完成签到,获得积分10
22秒前
西门迎天发布了新的文献求助10
22秒前
搜集达人应助历史真相采纳,获得10
22秒前
26秒前
XinFeng完成签到,获得积分10
27秒前
陨落星辰完成签到 ,获得积分10
28秒前
大锤哥完成签到,获得积分10
28秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540746
求助须知:如何正确求助?哪些是违规求助? 3117999
关于积分的说明 9333534
捐赠科研通 2815888
什么是DOI,文献DOI怎么找? 1547832
邀请新用户注册赠送积分活动 721175
科研通“疑难数据库(出版商)”最低求助积分说明 712578