[Risk factor analysis of the patients with solitary pulmonary nodules and establishment of a prediction model for the probability of malignancy].

肺癌 内科学 多元分析 单变量分析 回顾性队列研究
作者
Xin Wang,Yuehua Xu,Ziyan Du,Yajuan Qian,Zhonghua Xu,Rui Chen,Minhua Shi
出处
期刊:PubMed 卷期号:40 (2): 115-120 被引量:3
标识
DOI:10.3760/cma.j.issn.0253-3766.2018.02.007
摘要

Objective: This study aims to analyze the relationship among the clinical features, radiologic characteristics and pathological diagnosis in patients with solitary pulmonary nodules, and establish a prediction model for the probability of malignancy. Methods: Clinical data of 372 patients with solitary pulmonary nodules who underwent surgical resection with definite postoperative pathological diagnosis were retrospectively analyzed. In these cases, we collected clinical and radiologic features including gender, age, smoking history, history of tumor, family history of cancer, the location of lesion, ground-glass opacity, maximum diameter, calcification, vessel convergence sign, vacuole sign, pleural indentation, speculation and lobulation. The cases were divided to modeling group (268 cases) and validation group (104 cases). A new prediction model was established by logistic regression analying the data from modeling group. Then the data of validation group was planned to validate the efficiency of the new model, and was compared with three classical models(Mayo model, VA model and LiYun model). With the calculated probability values for each model from validation group, SPSS 22.0 was used to draw the receiver operating characteristic curve, to assess the predictive value of this new model. Results: 112 benign SPNs and 156 malignant SPNs were included in modeling group. Multivariable logistic regression analysis showed that gender, age, history of tumor, ground -glass opacity, maximum diameter, and speculation were independent predictors of malignancy in patients with SPN(P<0.05). We calculated a prediction model for the probability of malignancy as follow: p=e(x)/(1+ e(x)), x=-4.8029-0.743×gender+ 0.057×age+ 1.306×history of tumor+ 1.305×ground-glass opacity+ 0.051×maximum diameter+ 1.043×speculation. When the data of validation group was added to the four-mathematical prediction model, The area under the curve of our mathematical prediction model was 0.742, which is greater than other models (Mayo 0.696, VA 0.634, LiYun 0.681), while the differences between any two of the four models were not significant (P>0.05). Conclusions: Age of patient, gender, history of tumor, ground-glass opacity, maximum diameter and speculation are independent predictors of malignancy in patients with solitary pulmonary nodule. This logistic regression prediction mathematic model is not inferior to those classical models in estimating the prognosis of SPNs.目的: 研究孤立性肺结节(SPN)的临床和CT影像学特征与其病理诊断结果的关联,建立SPN良恶性预测的数学模型。 方法: 选取372例经手术切除并获取明确病理诊断的肺结节病例,分析患者的临床特征(性别、年龄、吸烟史、肿瘤史、病理结果)和CT影像学特征(结节位置、是否为磨玻璃结节、结节长径、钙化征、血管集束征、气管充气征、空泡征、胸膜凹陷征、毛刺征、分叶征)。将病例分为建模组(268例)和验证组(104例)。利用建模组患者的资料,进行多因素Logistic回归分析,构建预测结节良恶性的模型。将验证组的数据代入该模型进行验证,并和经典模型(Mayo模型、VA模型、李运模型)进行比较,绘制受试者工作特征曲线(ROC),评估预测价值。 结果: 建模组268例肺结节中,良性112例(41.8%),恶性156例(58.2%)。多因素Logistic回归分析显示,性别、年龄、肿瘤史、结节长径、磨玻璃结节、毛刺征是预测SPN良恶性的独立因素(P<0.05),SPN良恶性预测模型为p=e(x)/(1+e(x)),x=-4.8029-0.743×性别+0.057×年龄+1.306×肿瘤史+1.305×磨玻璃结节+0.051×结节长径+1.043×毛刺征。验证结果显示,所建立模型的ROC曲线下面积为0.742,与Mayo模型(0.696)、VA模型(0.634)、李运模型(0.681)比较,差异均无统计学意义(均P>0.05)。 结论: 患者的性别、年龄、肿瘤史、磨玻璃结节、结节长径、毛刺征是预测结节恶性的危险因素。建立的预测模型用来预测SPN良恶性,效力不劣于其他经典模型。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助YOP采纳,获得10
刚刚
思源应助整齐枫叶采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
xiaozheng完成签到,获得积分10
2秒前
可爱的函函应助zzy采纳,获得10
2秒前
小小发布了新的文献求助10
3秒前
3秒前
虚拟的飞双完成签到 ,获得积分10
3秒前
wanci应助xu1227采纳,获得10
4秒前
MMZ发布了新的文献求助10
4秒前
慕青应助xu1227采纳,获得10
4秒前
ZiyuanLi完成签到 ,获得积分10
4秒前
5秒前
可爱的天曼完成签到,获得积分10
6秒前
脑洞疼应助OKYT采纳,获得10
6秒前
池海秀发布了新的文献求助10
8秒前
星灵发布了新的文献求助10
11秒前
11秒前
隐形曼青应助Edward采纳,获得10
11秒前
12秒前
14秒前
AYESHA发布了新的文献求助10
14秒前
斯文败类应助小鲤鱼本鱼采纳,获得10
14秒前
zzy完成签到,获得积分10
15秒前
小坤同学发布了新的文献求助10
15秒前
Trenblin发布了新的文献求助10
15秒前
群体医学的master完成签到,获得积分10
15秒前
F__完成签到 ,获得积分10
16秒前
赘婿应助liaoliao采纳,获得10
16秒前
18秒前
18秒前
简单山水发布了新的文献求助10
18秒前
夯巭完成签到 ,获得积分10
19秒前
20秒前
21秒前
可爱的函函应助小任性采纳,获得10
22秒前
脑洞疼应助jjjeneny采纳,获得10
22秒前
22秒前
可靠巧荷完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4980088
求助须知:如何正确求助?哪些是违规求助? 4232586
关于积分的说明 13184139
捐赠科研通 4023857
什么是DOI,文献DOI怎么找? 2201488
邀请新用户注册赠送积分活动 1213925
关于科研通互助平台的介绍 1130293