中央歧管
分叉
数学
鞍结分岔
应用数学
分岔图
控制理论(社会学)
理论(学习稳定性)
跨临界分岔
分叉理论的生物学应用
特征方程
微分方程
控制(管理)
数学分析
霍普夫分叉
计算机科学
物理
机器学习
人工智能
非线性系统
量子力学
作者
Xiao‐Wei Jiang,Xiangyong Chen,Tingwen Huang,Huaicheng Yan
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2021-01-01
卷期号:68 (1): 376-380
被引量:28
标识
DOI:10.1109/tcsii.2020.2987392
摘要
This brief mainly studies the dynamic analysis and control problem for the Leslie-Gower predator-prey system, which is established by a delay-differential equation. We use the Euler scheme to derive the discrete form of Leslie-Gower model. By discussing the associated characteristic equation, its dynamics properties, including stability analysis and Neimark-Sacker bifurcation, are investigated. Furthermore, we use the center manifold reduction and normal form theory to show the directions of Neimark-Sacker bifurcation, and we also analyze the stability of periodic bifurcation solution. In order to achieve effective control of the above bifurcation, we proposed a novel delayed feedback control scheme. Finally, an simulation example is given to verify the effectiveness of the main conclusion.
科研通智能强力驱动
Strongly Powered by AbleSci AI