重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Investigating inhibition deficit in schizophrenia using task-modulated brain networks

精神分裂症(面向对象编程) 神经科学 任务(项目管理) 神经学 心理学 认知心理学
作者
Hang Yang,Xin Di,Qiyong Gong,John A. Sweeney,Bharat B. Biswal
出处
期刊:Brain Structure & Function [Springer Nature]
被引量:5
标识
DOI:10.1007/s00429-020-02078-7
摘要

Schizophrenia subjects have shown deficits of inhibition in conditions such as a stop signal task. The stop signal response time (SSRT) is consistently longer compared with healthy controls, and is accompanied by decreased brain activations in the right inferior frontal gyrus. However, as to how the response inhibition function is supported by distributed brain networks, and whether such networks are altered in schizophrenia are largely unknown. We analyzed functional MRI data of a stop signal task from 44 schizophrenia patients and 44 matched controls, and performed whole-brain psychophysiological interaction analysis to obtain task-modulated connectivity (TMC). Support vector classification was used to classify schizophrenia, and support vector regression was applied to explore the relationships between TMC and behavior indexes, such as SSRT. Schizophrenia group showed a decreased TMC pattern which mainly involved the fronto-parietal network, and increased TMC related to the sensorimotor network. Moreover, TMC could only successfully predict SSRT in the control group, further suggesting an abnormal task modulation in schizophrenia. Lastly, we compared the classification and prediction results from different types of measures, i.e., TMC, task-independent connectivity (TIC), task-functional connectivity (TFC), and resting-state functional connectivity (RSFC). TMC performed better in the behavior predictions, while TIC performed better in the classification. TFC and RSFC had similar classification and prediction performance as TIC. The current results provide new insights into the altered brain functional integration underlying response inhibition in schizophrenia, and suggest that different types of connectivity measures are complementary for a better understanding of brain networks and their alterations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得30
1秒前
1秒前
cp1690完成签到,获得积分10
1秒前
乐乐应助科研通管家采纳,获得80
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
欣喜芙发布了新的文献求助10
1秒前
深海渔完成签到,获得积分20
2秒前
2秒前
2秒前
ChenChen发布了新的文献求助10
3秒前
3秒前
阿强完成签到,获得积分10
3秒前
科研通AI6应助星辰采纳,获得10
3秒前
3秒前
3秒前
Ava应助123td采纳,获得10
3秒前
盏盏发布了新的文献求助30
4秒前
知知完成签到,获得积分10
4秒前
rose完成签到,获得积分10
5秒前
轻舟发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
李健的小迷弟应助小白采纳,获得10
6秒前
简单发布了新的文献求助10
6秒前
CodeCraft应助真白硝子采纳,获得20
7秒前
7秒前
7秒前
zhuzhuxia发布了新的文献求助30
7秒前
水天需发布了新的文献求助10
8秒前
英姑应助温婉的篮球采纳,获得10
8秒前
科研通AI6应助笑点低涵雁采纳,获得10
8秒前
天天快乐应助涵涵涵hh采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654