Investigating inhibition deficit in schizophrenia using task-modulated brain networks

精神分裂症(面向对象编程) 神经科学 任务(项目管理) 神经学 心理学 认知心理学
作者
Hang Yang,Xin Di,Qiyong Gong,John A. Sweeney,Bharat B. Biswal
出处
期刊:Brain Structure & Function [Springer Nature]
被引量:5
标识
DOI:10.1007/s00429-020-02078-7
摘要

Schizophrenia subjects have shown deficits of inhibition in conditions such as a stop signal task. The stop signal response time (SSRT) is consistently longer compared with healthy controls, and is accompanied by decreased brain activations in the right inferior frontal gyrus. However, as to how the response inhibition function is supported by distributed brain networks, and whether such networks are altered in schizophrenia are largely unknown. We analyzed functional MRI data of a stop signal task from 44 schizophrenia patients and 44 matched controls, and performed whole-brain psychophysiological interaction analysis to obtain task-modulated connectivity (TMC). Support vector classification was used to classify schizophrenia, and support vector regression was applied to explore the relationships between TMC and behavior indexes, such as SSRT. Schizophrenia group showed a decreased TMC pattern which mainly involved the fronto-parietal network, and increased TMC related to the sensorimotor network. Moreover, TMC could only successfully predict SSRT in the control group, further suggesting an abnormal task modulation in schizophrenia. Lastly, we compared the classification and prediction results from different types of measures, i.e., TMC, task-independent connectivity (TIC), task-functional connectivity (TFC), and resting-state functional connectivity (RSFC). TMC performed better in the behavior predictions, while TIC performed better in the classification. TFC and RSFC had similar classification and prediction performance as TIC. The current results provide new insights into the altered brain functional integration underlying response inhibition in schizophrenia, and suggest that different types of connectivity measures are complementary for a better understanding of brain networks and their alterations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
文艺不弱发布了新的文献求助20
2秒前
3秒前
可爱的函函应助ljz采纳,获得10
3秒前
torjain完成签到,获得积分10
3秒前
天天快乐应助李彤采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
CX发布了新的文献求助10
5秒前
研友_LMN2rn完成签到,获得积分10
6秒前
6秒前
所所应助123采纳,获得10
6秒前
师桐发布了新的文献求助10
6秒前
wuliweiwei发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
温暖的秋荷完成签到,获得积分10
7秒前
隐形曼青应助Boro采纳,获得10
8秒前
HH完成签到,获得积分10
8秒前
研友_nPPdan完成签到,获得积分10
8秒前
sean完成签到,获得积分10
8秒前
打打应助黄豆酱采纳,获得10
8秒前
内向的绿发布了新的文献求助10
9秒前
9秒前
9秒前
小蘑菇应助燕天与采纳,获得10
9秒前
无情的保温杯完成签到,获得积分10
10秒前
SamYang发布了新的文献求助10
10秒前
啊啊啊啊完成签到,获得积分10
10秒前
lll发布了新的文献求助10
10秒前
11秒前
deepsuck发布了新的文献求助10
11秒前
13秒前
wasb131关注了科研通微信公众号
13秒前
13秒前
米亚完成签到 ,获得积分10
13秒前
传奇3应助是莉莉娅采纳,获得10
13秒前
啊啊啊啊发布了新的文献求助30
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621