Investigating inhibition deficit in schizophrenia using task-modulated brain networks

精神分裂症(面向对象编程) 神经科学 任务(项目管理) 神经学 心理学 认知心理学
作者
Hang Yang,Xin Di,Qiyong Gong,John A. Sweeney,Bharat B. Biswal
出处
期刊:Brain Structure & Function [Springer Nature]
被引量:5
标识
DOI:10.1007/s00429-020-02078-7
摘要

Schizophrenia subjects have shown deficits of inhibition in conditions such as a stop signal task. The stop signal response time (SSRT) is consistently longer compared with healthy controls, and is accompanied by decreased brain activations in the right inferior frontal gyrus. However, as to how the response inhibition function is supported by distributed brain networks, and whether such networks are altered in schizophrenia are largely unknown. We analyzed functional MRI data of a stop signal task from 44 schizophrenia patients and 44 matched controls, and performed whole-brain psychophysiological interaction analysis to obtain task-modulated connectivity (TMC). Support vector classification was used to classify schizophrenia, and support vector regression was applied to explore the relationships between TMC and behavior indexes, such as SSRT. Schizophrenia group showed a decreased TMC pattern which mainly involved the fronto-parietal network, and increased TMC related to the sensorimotor network. Moreover, TMC could only successfully predict SSRT in the control group, further suggesting an abnormal task modulation in schizophrenia. Lastly, we compared the classification and prediction results from different types of measures, i.e., TMC, task-independent connectivity (TIC), task-functional connectivity (TFC), and resting-state functional connectivity (RSFC). TMC performed better in the behavior predictions, while TIC performed better in the classification. TFC and RSFC had similar classification and prediction performance as TIC. The current results provide new insights into the altered brain functional integration underlying response inhibition in schizophrenia, and suggest that different types of connectivity measures are complementary for a better understanding of brain networks and their alterations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖寻雪发布了新的文献求助10
1秒前
1秒前
JHHHH发布了新的文献求助10
2秒前
小白菜发布了新的文献求助10
6秒前
CodeCraft应助童紫槐采纳,获得10
7秒前
9秒前
9秒前
9秒前
英姑应助jinshijie采纳,获得10
13秒前
kevin完成签到,获得积分10
14秒前
维尼发布了新的文献求助10
15秒前
Owen应助金皮卡采纳,获得10
17秒前
傅朝西完成签到,获得积分10
17秒前
Ava应助akjsi采纳,获得10
17秒前
温暖寻雪发布了新的文献求助10
18秒前
20秒前
20秒前
无花果应助pan采纳,获得10
21秒前
小蘑菇应助小白菜采纳,获得10
22秒前
23秒前
LYY完成签到,获得积分10
23秒前
华仔应助hello采纳,获得10
23秒前
Luisa完成签到,获得积分10
24秒前
24秒前
含糊的金鱼完成签到,获得积分20
25秒前
25秒前
25秒前
25秒前
26秒前
akjsi发布了新的文献求助10
28秒前
科研通AI2S应助Cassio采纳,获得10
28秒前
29秒前
苏书白应助洋芋采纳,获得10
30秒前
fuiee发布了新的文献求助10
30秒前
小叶不吃香菜完成签到,获得积分10
31秒前
32秒前
32秒前
36秒前
pan发布了新的文献求助10
36秒前
Owen应助温暖寻雪采纳,获得10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149266
求助须知:如何正确求助?哪些是违规求助? 2800354
关于积分的说明 7839707
捐赠科研通 2457979
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706