The Application of Deep Reinforcement Learning to Distributed Spectrum Access in Dynamic Heterogeneous Environments With Partial Observations

计算机科学 稳健性(进化) 强化学习 人工智能 循环神经网络 频道(广播) 人工神经网络 机器学习 计算机网络 生物化学 化学 基因
作者
Yue Xu,Jianyuan Yu,R. Michael Buehrer
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (7): 4494-4506 被引量:44
标识
DOI:10.1109/twc.2020.2984227
摘要

This papera 1 investigates deep reinforcement learning (DRL) based on a Recurrent Neural Network (RNN) for Dynamic Spectrum Access (DSA) under partial observations, referred to as a Deep Recurrent Q-Network (DRQN). Specifically, we consider a scenario with multiple independent channels and multiple heterogeneous Primary Users (PUs). Two key challenges in our problem formulation are that we assume our DRQN node does not have any prior knowledge of the other nodes' behavior patterns and attempts to predict the future channel state based on previous observations. The goal of the DRQN is to learn a channel access strategy with a low collision rate but a high channel utilization rate. With proper definitions of the state, action and rewards, our extensive simulation results show that a DRQN-based approach can handle a variety of communication environments including dynamic environments. Further, our results show that the DRQN node is also able to cope with multi-rate and multi-agent scenarios. Importantly, we show the following benefits of using recurrent neural networks in DSA: (i) the ability to learn the optimal strategy in different environments under partial observations; (ii) robustness to imperfect observations and (iii) the ability to utilize multiple channels, and (iv) robustness in the presence of multiple agents. 1 A parton of this work was presented at MILCOM 2018 in [1].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欣慰冬亦完成签到 ,获得积分10
刚刚
李健的小迷弟应助lumous采纳,获得30
刚刚
刚刚
aaaaa发布了新的文献求助10
刚刚
杰瑞完成签到,获得积分20
1秒前
烟花应助gtpking采纳,获得10
1秒前
SmileLin发布了新的文献求助10
1秒前
优美的芷卉完成签到,获得积分20
3秒前
tting关注了科研通微信公众号
4秒前
灿cancan完成签到,获得积分20
4秒前
UNIQUE完成签到,获得积分10
5秒前
Ivyii发布了新的文献求助10
6秒前
Chen发布了新的文献求助10
6秒前
杨江华完成签到,获得积分20
6秒前
7秒前
ding应助SmileLin采纳,获得10
8秒前
完美世界应助淡定的竺采纳,获得50
8秒前
8秒前
星河梦枕发布了新的文献求助10
9秒前
GuiChenli完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
woxiangtangping完成签到 ,获得积分10
12秒前
科研通AI6应助专注的水壶采纳,获得10
12秒前
李健应助阿萨卡先生采纳,获得10
13秒前
星辰大海应助柯科研采纳,获得10
13秒前
隐形曼青应助灿cancan采纳,获得10
13秒前
14秒前
不及发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
啦啦啦发布了新的文献求助10
15秒前
moumou发布了新的文献求助10
16秒前
肖航子完成签到,获得积分10
16秒前
17秒前
meteor完成签到,获得积分10
17秒前
17秒前
LIANG发布了新的文献求助20
17秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577902
求助须知:如何正确求助?哪些是违规求助? 4662960
关于积分的说明 14743852
捐赠科研通 4603592
什么是DOI,文献DOI怎么找? 2526534
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465642