The Application of Deep Reinforcement Learning to Distributed Spectrum Access in Dynamic Heterogeneous Environments With Partial Observations

计算机科学 稳健性(进化) 强化学习 人工智能 循环神经网络 频道(广播) 人工神经网络 机器学习 计算机网络 生物化学 化学 基因
作者
Yue Xu,Jianyuan Yu,R. Michael Buehrer
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (7): 4494-4506 被引量:44
标识
DOI:10.1109/twc.2020.2984227
摘要

This papera 1 investigates deep reinforcement learning (DRL) based on a Recurrent Neural Network (RNN) for Dynamic Spectrum Access (DSA) under partial observations, referred to as a Deep Recurrent Q-Network (DRQN). Specifically, we consider a scenario with multiple independent channels and multiple heterogeneous Primary Users (PUs). Two key challenges in our problem formulation are that we assume our DRQN node does not have any prior knowledge of the other nodes' behavior patterns and attempts to predict the future channel state based on previous observations. The goal of the DRQN is to learn a channel access strategy with a low collision rate but a high channel utilization rate. With proper definitions of the state, action and rewards, our extensive simulation results show that a DRQN-based approach can handle a variety of communication environments including dynamic environments. Further, our results show that the DRQN node is also able to cope with multi-rate and multi-agent scenarios. Importantly, we show the following benefits of using recurrent neural networks in DSA: (i) the ability to learn the optimal strategy in different environments under partial observations; (ii) robustness to imperfect observations and (iii) the ability to utilize multiple channels, and (iv) robustness in the presence of multiple agents. 1 A parton of this work was presented at MILCOM 2018 in [1].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助孤鸿影98采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
Juid应助科研通管家采纳,获得20
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
邵璞发布了新的文献求助10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
星辰大海应助zyw采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
BowieHuang应助三十三天采纳,获得10
5秒前
鞭霆发布了新的文献求助10
5秒前
海洋完成签到,获得积分10
5秒前
7秒前
7秒前
XLC发布了新的文献求助10
8秒前
Lucas应助夏小安采纳,获得10
9秒前
zyn发布了新的文献求助20
9秒前
雨点发布了新的文献求助20
9秒前
明亮白山发布了新的文献求助10
9秒前
9秒前
9秒前
燕儿完成签到 ,获得积分10
10秒前
慕青应助堪曼凝采纳,获得10
11秒前
彩虹海完成签到,获得积分10
11秒前
12秒前
Wind发布了新的文献求助50
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632506
求助须知:如何正确求助?哪些是违规求助? 4727031
关于积分的说明 14982275
捐赠科研通 4790442
什么是DOI,文献DOI怎么找? 2558305
邀请新用户注册赠送积分活动 1518683
关于科研通互助平台的介绍 1479145