The Application of Deep Reinforcement Learning to Distributed Spectrum Access in Dynamic Heterogeneous Environments With Partial Observations

计算机科学 稳健性(进化) 强化学习 人工智能 循环神经网络 频道(广播) 人工神经网络 机器学习 计算机网络 生物化学 化学 基因
作者
Yue Xu,Jianyuan Yu,R. Michael Buehrer
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (7): 4494-4506 被引量:44
标识
DOI:10.1109/twc.2020.2984227
摘要

This papera 1 investigates deep reinforcement learning (DRL) based on a Recurrent Neural Network (RNN) for Dynamic Spectrum Access (DSA) under partial observations, referred to as a Deep Recurrent Q-Network (DRQN). Specifically, we consider a scenario with multiple independent channels and multiple heterogeneous Primary Users (PUs). Two key challenges in our problem formulation are that we assume our DRQN node does not have any prior knowledge of the other nodes' behavior patterns and attempts to predict the future channel state based on previous observations. The goal of the DRQN is to learn a channel access strategy with a low collision rate but a high channel utilization rate. With proper definitions of the state, action and rewards, our extensive simulation results show that a DRQN-based approach can handle a variety of communication environments including dynamic environments. Further, our results show that the DRQN node is also able to cope with multi-rate and multi-agent scenarios. Importantly, we show the following benefits of using recurrent neural networks in DSA: (i) the ability to learn the optimal strategy in different environments under partial observations; (ii) robustness to imperfect observations and (iii) the ability to utilize multiple channels, and (iv) robustness in the presence of multiple agents. 1 A parton of this work was presented at MILCOM 2018 in [1].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
天真的酒窝完成签到,获得积分10
7秒前
cherry完成签到 ,获得积分10
7秒前
8秒前
8秒前
小何发布了新的文献求助10
9秒前
10秒前
12秒前
12秒前
罗大壮发布了新的文献求助10
12秒前
Iris完成签到 ,获得积分10
13秒前
Ally发布了新的文献求助10
14秒前
茶茶完成签到,获得积分10
14秒前
酷酷的绮完成签到,获得积分10
15秒前
弦断陌殇应助努力小周采纳,获得50
16秒前
罗大壮完成签到,获得积分10
19秒前
19秒前
20秒前
23秒前
23秒前
24秒前
高贵梦秋发布了新的文献求助10
26秒前
27秒前
Linson发布了新的文献求助10
29秒前
SYY完成签到,获得积分10
30秒前
ahq发布了新的文献求助10
30秒前
somnus_fu发布了新的文献求助50
30秒前
citrus完成签到,获得积分10
31秒前
南京必吃发布了新的文献求助10
31秒前
32秒前
QiLe完成签到 ,获得积分10
33秒前
33秒前
量子星尘发布了新的文献求助10
36秒前
风中冰香应助WZ采纳,获得10
37秒前
37秒前
完美世界应助somnus_fu采纳,获得10
38秒前
Hello应助Evander采纳,获得10
39秒前
香蕉诗蕊给爱喷火的小恐龙的求助进行了留言
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073