Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification

判别式 计算机科学 人工智能 模式识别(心理学) 领域(数学分析) 嵌入 域适应 深度学习 源代码 上下文图像分类 机器学习 图像(数学) 分类器(UML) 数学 操作系统 数学分析
作者
Zhaokui Li,Ming Liu,Yushi Chen,Yimin Xu,Wei Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:168
标识
DOI:10.1109/tgrs.2021.3057066
摘要

One of the challenges in hyperspectral image (HSI) classification is that there are limited labeled samples to train a classifier for very high-dimensional data. In practical applications, we often encounter an HSI domain (called target domain) with very few labeled data, while another HSI domain (called source domain) may have enough labeled data. Classes between the two domains may not be the same. This article attempts to use source class data to help classify the target classes, including the same and new unseen classes. To address this classification paradigm, a meta-learning paradigm for few-shot learning (FSL) is usually adopted. However, existing FSL methods do not account for domain shift between source and target domain. To solve the FSL problem under domain shift, a novel deep cross-domain few-shot learning (DCFSL) method is proposed. For the first time, DCFSL tackles FSL and domain adaptation issues in a unified framework. Specifically, a conditional adversarial domain adaptation strategy is utilized to overcome domain shift, which can achieve domain distribution alignment. In addition, FSL is executed in source and target classes at the same time, which can not only discover transferable knowledge in the source classes but also learn a discriminative embedding model to the target classes. Experiments conducted on four public HSI data sets demonstrate that DCFSL outperforms the existing FSL methods and deep learning methods for HSI classification. Our source code is available at https://github.com/Li-ZK/DCFSL-2021 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉以菱发布了新的文献求助10
1秒前
2秒前
PanCiro完成签到,获得积分10
3秒前
feng完成签到,获得积分10
3秒前
一一应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
Snoopy发布了新的文献求助10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
洪艳应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
一一应助科研通管家采纳,获得10
4秒前
5秒前
7秒前
不配.应助机灵的曼岚采纳,获得10
8秒前
无花果应助打我呀采纳,获得10
9秒前
烟花应助xie老板采纳,获得10
9秒前
Kuhaku完成签到,获得积分10
10秒前
feng发布了新的文献求助10
11秒前
sue发布了新的文献求助10
12秒前
华仔应助牛八先生采纳,获得10
12秒前
科研通AI2S应助香蕉以菱采纳,获得10
14秒前
16秒前
领导范儿应助小雒雒采纳,获得10
19秒前
19秒前
诺诺诺诺呀完成签到,获得积分10
20秒前
青衣北风发布了新的文献求助10
20秒前
NOBODY完成签到,获得积分10
20秒前
20秒前
会工科魔法的社长完成签到,获得积分10
23秒前
阿佳梨木完成签到,获得积分10
23秒前
Nancy完成签到,获得积分20
25秒前
25秒前
牛八先生发布了新的文献求助10
26秒前
魏佳阁应助LZL采纳,获得10
26秒前
wangchu关注了科研通微信公众号
27秒前
30秒前
jinxing发布了新的文献求助10
31秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247606
求助须知:如何正确求助?哪些是违规求助? 2890926
关于积分的说明 8265247
捐赠科研通 2559191
什么是DOI,文献DOI怎么找? 1387904
科研通“疑难数据库(出版商)”最低求助积分说明 650658
邀请新用户注册赠送积分活动 627495