重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories

关系(数据库) 关系抽取 人工智能 计算机科学 判决 注释 特征(语言学) 信息抽取 机器学习 自然语言处理 情报检索 比例(比率) 数据科学 过程(计算) 数据挖掘 哲学 物理 操作系统 量子力学 语言学
作者
Lixiang Hong,Jinjian Lin,Shuya Li,Fangping Wan,Hui Yang,Tao Jiang,Dan Zhao,Jianyang Zeng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (6): 347-355 被引量:57
标识
DOI:10.1038/s42256-020-0189-y
摘要

Knowledge about the relations between biomedical entities (such as drugs and targets) is widely distributed in more than 30 million research articles and consistently plays an important role in the development of biomedical science. In this work, we propose a novel machine learning framework, named BERE, for automatically extracting biomedical relations from large-scale literature repositories. BERE uses a hybrid encoding network to better represent each sentence from both semantic and syntactic aspects, and employs a feature aggregation network to make predictions after considering all relevant statements. More importantly, BERE can also be trained without any human annotation via a distant supervision technique. Through extensive tests, BERE has demonstrated promising performance in extracting biomedical relations, and can also find meaningful relations that were not reported in existing databases, thus providing useful hints to guide wet-lab experiments and advance the biological knowledge discovery process. A lot of scientific literature is unstructured, which makes extracting information for biomedical databases difficult. Hong and colleagues show that a distant supervision approach, using latent tree learning and recurrent units, can extract drug–target interactions from literature that were previously unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hsingee发布了新的文献求助10
1秒前
余在何发布了新的文献求助10
1秒前
筒子发布了新的文献求助10
1秒前
1秒前
ZhangDaying完成签到 ,获得积分10
2秒前
捶捶发布了新的文献求助10
3秒前
斯文败类应助苗条寒荷采纳,获得10
4秒前
科研通AI6应助yu采纳,获得10
4秒前
5秒前
传奇3应助小满采纳,获得10
5秒前
江阳宏发布了新的文献求助10
5秒前
酸菜余发布了新的文献求助10
5秒前
神樂彩兔发布了新的文献求助10
7秒前
芊芊完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
fuga发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
难过的曼香完成签到,获得积分10
11秒前
12秒前
852应助忧虑的访梦采纳,获得10
12秒前
12秒前
qny完成签到 ,获得积分10
12秒前
愤怒的蛋挞完成签到,获得积分10
13秒前
yomi完成签到 ,获得积分10
14秒前
人土土一十八完成签到,获得积分10
14秒前
dkkjdsfakjd完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
妮娅发布了新的文献求助10
16秒前
桐桐应助Duang采纳,获得10
16秒前
17秒前
17秒前
125ljw发布了新的文献求助10
17秒前
阿腾发布了新的文献求助20
17秒前
li完成签到,获得积分10
18秒前
木叶完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468049
求助须知:如何正确求助?哪些是违规求助? 4571603
关于积分的说明 14330660
捐赠科研通 4498112
什么是DOI,文献DOI怎么找? 2464315
邀请新用户注册赠送积分活动 1453064
关于科研通互助平台的介绍 1427739