A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories

关系(数据库) 关系抽取 人工智能 计算机科学 判决 注释 特征(语言学) 信息抽取 机器学习 自然语言处理 情报检索 比例(比率) 数据科学 过程(计算) 数据挖掘 哲学 物理 操作系统 量子力学 语言学
作者
Lixiang Hong,Jinjian Lin,Shuya Li,Fangping Wan,Hui Yang,Tao Jiang,Dan Zhao,Jianyang Zeng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (6): 347-355 被引量:34
标识
DOI:10.1038/s42256-020-0189-y
摘要

Knowledge about the relations between biomedical entities (such as drugs and targets) is widely distributed in more than 30 million research articles and consistently plays an important role in the development of biomedical science. In this work, we propose a novel machine learning framework, named BERE, for automatically extracting biomedical relations from large-scale literature repositories. BERE uses a hybrid encoding network to better represent each sentence from both semantic and syntactic aspects, and employs a feature aggregation network to make predictions after considering all relevant statements. More importantly, BERE can also be trained without any human annotation via a distant supervision technique. Through extensive tests, BERE has demonstrated promising performance in extracting biomedical relations, and can also find meaningful relations that were not reported in existing databases, thus providing useful hints to guide wet-lab experiments and advance the biological knowledge discovery process. A lot of scientific literature is unstructured, which makes extracting information for biomedical databases difficult. Hong and colleagues show that a distant supervision approach, using latent tree learning and recurrent units, can extract drug–target interactions from literature that were previously unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助qq采纳,获得10
1秒前
Likz发布了新的文献求助10
2秒前
科目三应助SCI著名作者SCT采纳,获得10
3秒前
一二发布了新的文献求助10
3秒前
Enterprise完成签到,获得积分10
3秒前
令尘完成签到,获得积分10
3秒前
Jason发布了新的文献求助10
4秒前
4秒前
烟花应助你好采纳,获得30
4秒前
传奇3应助杜兰特工队采纳,获得10
5秒前
6秒前
充电宝应助Jason采纳,获得10
8秒前
望月发布了新的文献求助10
8秒前
8秒前
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得30
9秒前
伊酒应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
9秒前
研友_Z14Yln应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
ookeah发布了新的文献求助10
10秒前
江愉应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
派大星完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462411
求助须知:如何正确求助?哪些是违规求助? 3055964
关于积分的说明 9050078
捐赠科研通 2745534
什么是DOI,文献DOI怎么找? 1506438
科研通“疑难数据库(出版商)”最低求助积分说明 696110
邀请新用户注册赠送积分活动 695633