A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories

关系(数据库) 关系抽取 人工智能 计算机科学 判决 注释 特征(语言学) 信息抽取 机器学习 自然语言处理 情报检索 比例(比率) 数据科学 过程(计算) 数据挖掘 语言学 哲学 物理 量子力学 操作系统
作者
Lixiang Hong,Jinjian Lin,Shuya Li,Fangping Wan,Hui Yang,Tao Jiang,Dan Zhao,Jianyang Zeng
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (6): 347-355 被引量:54
标识
DOI:10.1038/s42256-020-0189-y
摘要

Knowledge about the relations between biomedical entities (such as drugs and targets) is widely distributed in more than 30 million research articles and consistently plays an important role in the development of biomedical science. In this work, we propose a novel machine learning framework, named BERE, for automatically extracting biomedical relations from large-scale literature repositories. BERE uses a hybrid encoding network to better represent each sentence from both semantic and syntactic aspects, and employs a feature aggregation network to make predictions after considering all relevant statements. More importantly, BERE can also be trained without any human annotation via a distant supervision technique. Through extensive tests, BERE has demonstrated promising performance in extracting biomedical relations, and can also find meaningful relations that were not reported in existing databases, thus providing useful hints to guide wet-lab experiments and advance the biological knowledge discovery process. A lot of scientific literature is unstructured, which makes extracting information for biomedical databases difficult. Hong and colleagues show that a distant supervision approach, using latent tree learning and recurrent units, can extract drug–target interactions from literature that were previously unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助pass采纳,获得10
刚刚
酷酷的小白云完成签到,获得积分20
1秒前
4秒前
4秒前
5秒前
挽倾颜完成签到,获得积分10
7秒前
goblue完成签到,获得积分10
8秒前
粽子完成签到,获得积分10
8秒前
妖妖灵发布了新的文献求助10
9秒前
CodeCraft应助yuan采纳,获得10
9秒前
深情安青应助ccccchen采纳,获得10
12秒前
文艺的念之完成签到 ,获得积分10
12秒前
13秒前
13秒前
做梦发布了新的文献求助20
13秒前
大模型应助樱木407采纳,获得10
15秒前
科研小民工应助虚幻凝天采纳,获得30
15秒前
科研通AI2S应助Mask采纳,获得10
17秒前
pass发布了新的文献求助10
20秒前
22秒前
做梦完成签到,获得积分10
22秒前
23秒前
茗茗完成签到,获得积分10
23秒前
佰斯特威应助妖妖灵采纳,获得10
23秒前
pluto应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
kingwill应助科研通管家采纳,获得20
24秒前
杨文成应助科研通管家采纳,获得10
24秒前
lilac应助科研通管家采纳,获得10
24秒前
顾矜应助科研通管家采纳,获得10
25秒前
杨文成应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得30
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281158
关于积分的说明 10023202
捐赠科研通 2997821
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731