A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories

关系(数据库) 关系抽取 人工智能 计算机科学 判决 注释 特征(语言学) 信息抽取 机器学习 自然语言处理 情报检索 比例(比率) 数据科学 过程(计算) 数据挖掘 哲学 物理 操作系统 量子力学 语言学
作者
Lixiang Hong,Jinjian Lin,Shuya Li,Fangping Wan,Hui Yang,Tao Jiang,Dan Zhao,Jianyang Zeng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (6): 347-355 被引量:57
标识
DOI:10.1038/s42256-020-0189-y
摘要

Knowledge about the relations between biomedical entities (such as drugs and targets) is widely distributed in more than 30 million research articles and consistently plays an important role in the development of biomedical science. In this work, we propose a novel machine learning framework, named BERE, for automatically extracting biomedical relations from large-scale literature repositories. BERE uses a hybrid encoding network to better represent each sentence from both semantic and syntactic aspects, and employs a feature aggregation network to make predictions after considering all relevant statements. More importantly, BERE can also be trained without any human annotation via a distant supervision technique. Through extensive tests, BERE has demonstrated promising performance in extracting biomedical relations, and can also find meaningful relations that were not reported in existing databases, thus providing useful hints to guide wet-lab experiments and advance the biological knowledge discovery process. A lot of scientific literature is unstructured, which makes extracting information for biomedical databases difficult. Hong and colleagues show that a distant supervision approach, using latent tree learning and recurrent units, can extract drug–target interactions from literature that were previously unknown.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zahahaha发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
阔达之卉发布了新的文献求助10
1秒前
1秒前
2秒前
Vincent发布了新的文献求助30
2秒前
2秒前
agnes完成签到,获得积分10
2秒前
3秒前
advance发布了新的文献求助10
3秒前
魔幻芒果发布了新的文献求助10
3秒前
肖琳完成签到 ,获得积分20
3秒前
学术小子发布了新的文献求助10
4秒前
李拾舟完成签到,获得积分10
4秒前
番茄鱼发布了新的文献求助10
5秒前
huhu完成签到,获得积分10
5秒前
CClaire完成签到,获得积分10
6秒前
Lucas应助yang采纳,获得10
6秒前
脑洞疼应助伍次友采纳,获得10
6秒前
6秒前
冯晓潮发布了新的文献求助10
7秒前
斯文败类应助樂楽采纳,获得10
7秒前
Zhj发布了新的文献求助10
7秒前
FashionBoy应助从容飞阳采纳,获得10
7秒前
7秒前
7秒前
科研通AI2S应助酷酷妙梦采纳,获得10
7秒前
万能图书馆应助小可采纳,获得10
9秒前
李健的小迷弟应助陈琳采纳,获得10
9秒前
yoyo完成签到,获得积分10
9秒前
能干雁凡发布了新的文献求助10
9秒前
顾矜应助cfer采纳,获得10
10秒前
自由的微风完成签到,获得积分10
10秒前
10秒前
zhd完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152