Emergent Properties of Foveated Perceptual Systems

人工智能 计算机科学 人类视觉系统模型 计算机视觉 稳健性(进化) 卷积神经网络 视觉感受 感知 模式识别(心理学) 图像(数学) 生物化学 生物 基因 神经科学 化学
作者
Arturo Deza,Talia Konkle
摘要

We introduce foveated perceptual systems -- a hybrid architecture inspired by human vision, to explore the role of a \textit{texture-based} foveation stage on the nature and robustness of subsequently learned visual representation in machines. Specifically, these two-stage perceptual systems first foveate an image, inducing a texture-like encoding of peripheral information -- mimicking the effects of \textit{visual crowding} -- which is then relayed through a convolutional neural network (CNN) trained to perform scene categorization. We find that these foveated perceptual systems learn a visual representation that is \textit{distinct} from their non-foveated counterpart through experiments that probe: 1) i.i.d and o.o.d generalization; 2) robustness to occlusion; 3) a center image bias; and 4) high spatial frequency sensitivity. In addition, we examined the impact of this foveation transform with respect to two additional models derived with a rate-distortion optimization procedure to compute matched-resource systems: a lower resolution non-foveated system, and a foveated system with adaptive Gaussian blurring. The properties of greater i.i.d generalization, high spatial frequency sensitivity, and robustness to occlusion emerged exclusively in our foveated texture-based models, independent of network architecture and learning dynamics. Altogether, these results demonstrate that foveation -- via peripheral texture-based computations -- yields a distinct and robust representational format of scene information relative to standard machine vision approaches, and also provides symbiotic computational support that texture-based peripheral encoding has important representational consequences for processing in the human visual system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
芋圆不圆完成签到,获得积分10
1秒前
招财不肥发布了新的文献求助10
2秒前
zxc111发布了新的文献求助10
2秒前
魔幻的从梦完成签到,获得积分10
2秒前
3秒前
Xiaoxiao应助sunyexuan采纳,获得10
4秒前
5秒前
6秒前
淼淼之锋完成签到 ,获得积分10
6秒前
赢赢完成签到 ,获得积分10
6秒前
7秒前
8秒前
科目三应助落落采纳,获得10
10秒前
67发布了新的文献求助10
10秒前
10秒前
溜溜完成签到,获得积分10
10秒前
xixi完成签到 ,获得积分10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
撒上咖啡应助科研通管家采纳,获得10
11秒前
RC_Wang应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
琪琪扬扬发布了新的文献求助10
11秒前
sutharsons应助科研通管家采纳,获得30
11秒前
orixero应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
清爽老九应助科研通管家采纳,获得20
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
hui发布了新的文献求助30
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808