Emergent Properties of Foveated Perceptual Systems

人工智能 计算机科学 人类视觉系统模型 计算机视觉 稳健性(进化) 卷积神经网络 视觉感受 感知 模式识别(心理学) 图像(数学) 生物化学 化学 神经科学 生物 基因
作者
Arturo Deza,Talia Konkle
摘要

We introduce foveated perceptual systems -- a hybrid architecture inspired by human vision, to explore the role of a \textit{texture-based} foveation stage on the nature and robustness of subsequently learned visual representation in machines. Specifically, these two-stage perceptual systems first foveate an image, inducing a texture-like encoding of peripheral information -- mimicking the effects of \textit{visual crowding} -- which is then relayed through a convolutional neural network (CNN) trained to perform scene categorization. We find that these foveated perceptual systems learn a visual representation that is \textit{distinct} from their non-foveated counterpart through experiments that probe: 1) i.i.d and o.o.d generalization; 2) robustness to occlusion; 3) a center image bias; and 4) high spatial frequency sensitivity. In addition, we examined the impact of this foveation transform with respect to two additional models derived with a rate-distortion optimization procedure to compute matched-resource systems: a lower resolution non-foveated system, and a foveated system with adaptive Gaussian blurring. The properties of greater i.i.d generalization, high spatial frequency sensitivity, and robustness to occlusion emerged exclusively in our foveated texture-based models, independent of network architecture and learning dynamics. Altogether, these results demonstrate that foveation -- via peripheral texture-based computations -- yields a distinct and robust representational format of scene information relative to standard machine vision approaches, and also provides symbiotic computational support that texture-based peripheral encoding has important representational consequences for processing in the human visual system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyi完成签到,获得积分10
刚刚
自觉的书蝶完成签到,获得积分10
1秒前
张志超发布了新的文献求助10
2秒前
2秒前
3秒前
维尼完成签到,获得积分10
4秒前
汉堡包应助安详夏彤采纳,获得10
4秒前
温乐松发布了新的文献求助10
5秒前
深情安青应助ohooo采纳,获得10
6秒前
6秒前
7秒前
桂d发布了新的文献求助10
7秒前
axt完成签到,获得积分10
7秒前
NotToday发布了新的文献求助10
7秒前
淡定访琴发布了新的文献求助10
8秒前
9秒前
9秒前
lu2025发布了新的文献求助10
11秒前
axt发布了新的文献求助10
11秒前
SciGPT应助认真的向卉采纳,获得10
12秒前
12秒前
13秒前
淡定访琴完成签到,获得积分10
13秒前
迟暮完成签到 ,获得积分10
13秒前
英姑应助NotToday采纳,获得10
13秒前
vicky发布了新的文献求助10
14秒前
xinyuxie发布了新的文献求助20
14秒前
Ava应助kate采纳,获得10
14秒前
心理学四完成签到,获得积分10
15秒前
七七完成签到 ,获得积分10
16秒前
poplin发布了新的文献求助10
16秒前
未闻明日之花完成签到,获得积分10
16秒前
ohooo发布了新的文献求助10
17秒前
17秒前
怡然凌柏完成签到 ,获得积分10
17秒前
18秒前
xinyuxie完成签到,获得积分10
20秒前
大个应助lu2025采纳,获得10
21秒前
zhaojiachao发布了新的文献求助10
22秒前
田様应助axt采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646393
求助须知:如何正确求助?哪些是违规求助? 4771261
关于积分的说明 15034850
捐赠科研通 4805220
什么是DOI,文献DOI怎么找? 2569528
邀请新用户注册赠送积分活动 1526533
关于科研通互助平台的介绍 1485849