Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

计算机视觉 图像配准 能见度 计算机科学 人工智能 腹腔镜手术 医学 腹腔镜检查 外科 图像(数学) 光学 物理
作者
Maria Robu
出处
期刊:Doctoral thesis, UCL (University College London).
链接
摘要

Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒙古马完成签到 ,获得积分10
1秒前
1秒前
赘婿应助IF采纳,获得10
1秒前
lc339完成签到,获得积分10
2秒前
2秒前
Tache完成签到,获得积分10
2秒前
2秒前
3秒前
wangxin完成签到,获得积分20
4秒前
今后应助温乘云采纳,获得10
4秒前
4秒前
漂流关注了科研通微信公众号
6秒前
天真的邴发布了新的文献求助10
6秒前
王润完成签到,获得积分10
7秒前
daishuheng完成签到 ,获得积分10
7秒前
Metastasis发布了新的文献求助10
7秒前
Garry发布了新的文献求助10
7秒前
太阳完成签到,获得积分10
8秒前
9秒前
10秒前
r921192发布了新的文献求助10
11秒前
11秒前
12秒前
111发布了新的文献求助10
14秒前
Doctor.Xie完成签到,获得积分10
14秒前
15秒前
17秒前
17秒前
heart发布了新的文献求助10
18秒前
温乘云发布了新的文献求助10
20秒前
20秒前
21秒前
六八发布了新的文献求助10
21秒前
一星如月完成签到,获得积分10
23秒前
茄丁捞面发布了新的文献求助10
24秒前
复杂的小翠完成签到,获得积分20
25秒前
老詹头应助唯一采纳,获得10
25秒前
26秒前
David完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706