Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

计算机视觉 图像配准 能见度 计算机科学 人工智能 腹腔镜手术 医学 腹腔镜检查 外科 图像(数学) 光学 物理
作者
Maria Robu
出处
期刊:Doctoral thesis, UCL (University College London).
链接
摘要

Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waws完成签到,获得积分10
刚刚
情怀应助小小淑采纳,获得10
1秒前
lhy发布了新的文献求助10
2秒前
2秒前
健康的机器猫完成签到 ,获得积分10
5秒前
阔达的大开完成签到,获得积分10
5秒前
木木完成签到 ,获得积分10
5秒前
神经完成签到,获得积分10
6秒前
chen1314完成签到,获得积分10
6秒前
钟钟完成签到,获得积分10
7秒前
张111发布了新的文献求助10
8秒前
吕玉宁完成签到,获得积分20
8秒前
10秒前
Xiaosi完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
吕玉宁发布了新的文献求助10
15秒前
于木完成签到 ,获得积分10
16秒前
舒心寒天发布了新的文献求助10
17秒前
无花果应助ohooo采纳,获得10
17秒前
vanne完成签到,获得积分10
17秒前
qq应助阔达的大开采纳,获得10
17秒前
虚幻的紫伊完成签到,获得积分20
19秒前
西大喜发布了新的文献求助10
19秒前
20秒前
山那边有海完成签到 ,获得积分10
21秒前
下次一定完成签到,获得积分10
22秒前
24秒前
科研菜狗发布了新的文献求助10
24秒前
芳菲依旧应助Dawn采纳,获得20
24秒前
ohooo完成签到,获得积分20
25秒前
yonglong完成签到,获得积分10
25秒前
852应助SN采纳,获得10
26秒前
歪比巴卜完成签到 ,获得积分10
26秒前
CipherSage应助舒心钧采纳,获得10
27秒前
27秒前
haozi0324完成签到,获得积分10
28秒前
ohooo发布了新的文献求助10
29秒前
29秒前
sycsyc完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836