Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

计算机视觉 图像配准 能见度 计算机科学 人工智能 腹腔镜手术 医学 腹腔镜检查 外科 图像(数学) 光学 物理
作者
Maria Robu
出处
期刊:Doctoral thesis, UCL (University College London).
链接
摘要

Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助20
刚刚
后夜完成签到,获得积分10
刚刚
橙熟完成签到,获得积分10
刚刚
刚刚
刚刚
浅眸流年完成签到,获得积分10
1秒前
缥缈的绿兰完成签到,获得积分10
1秒前
差点长成帅哥完成签到,获得积分10
2秒前
找呀找完成签到,获得积分10
2秒前
保奔发布了新的文献求助10
2秒前
2秒前
2秒前
1111完成签到,获得积分10
2秒前
QC完成签到,获得积分10
2秒前
楚明允完成签到 ,获得积分10
3秒前
SciGPT应助bobo采纳,获得10
3秒前
3秒前
完美世界应助ccccd采纳,获得10
3秒前
4秒前
xiaoxiao完成签到,获得积分10
5秒前
SRY发布了新的文献求助10
5秒前
迷了路的猫完成签到,获得积分10
6秒前
烟花应助胡立杰采纳,获得10
6秒前
琂当归完成签到,获得积分10
6秒前
小药丸包饺子应助Oil采纳,获得10
7秒前
刘硕发布了新的文献求助10
7秒前
8秒前
种太阳完成签到 ,获得积分10
8秒前
8秒前
浪子发布了新的文献求助20
8秒前
帅气的机器猫完成签到,获得积分10
8秒前
怕黑的班完成签到,获得积分10
9秒前
蜡笔小新新完成签到,获得积分10
9秒前
10秒前
ykiiii完成签到,获得积分10
12秒前
忙碌的数学人完成签到,获得积分10
12秒前
张玲梅发布了新的文献求助10
12秒前
在水一方应助沉默的尔槐采纳,获得10
13秒前
豆子完成签到,获得积分10
13秒前
DQ完成签到,获得积分10
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167