Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

计算机视觉 图像配准 能见度 计算机科学 人工智能 腹腔镜手术 医学 腹腔镜检查 外科 图像(数学) 光学 物理
作者
Maria Robu
出处
期刊:Doctoral thesis, UCL (University College London).
链接
摘要

Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天白云发布了新的文献求助10
刚刚
华仔应助343386625采纳,获得10
1秒前
1秒前
smy发布了新的文献求助10
1秒前
LEMONS应助rktrain2023采纳,获得10
2秒前
两只老虎发布了新的文献求助10
3秒前
李某人发布了新的文献求助20
3秒前
懵懂的土豆完成签到,获得积分10
4秒前
4秒前
5秒前
幸福萝发布了新的文献求助10
5秒前
5秒前
元谷雪发布了新的文献求助10
6秒前
vvan完成签到,获得积分10
6秒前
chenshen完成签到,获得积分10
6秒前
酷酷王安安完成签到 ,获得积分10
7秒前
ELITOmiko完成签到,获得积分10
7秒前
111完成签到,获得积分20
7秒前
Bellamie完成签到 ,获得积分20
7秒前
小马甲应助桃子e采纳,获得10
7秒前
HPP123完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
smy完成签到,获得积分10
8秒前
lewis17发布了新的文献求助10
8秒前
奔流的河发布了新的文献求助10
9秒前
9秒前
cacaca完成签到,获得积分10
9秒前
棋士发布了新的文献求助10
10秒前
mickiller完成签到,获得积分10
10秒前
11秒前
slisa1发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
潘继坤发布了新的文献求助10
12秒前
危机的安容完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500212
关于积分的说明 11098471
捐赠科研通 3230734
什么是DOI,文献DOI怎么找? 1786110
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801625