GenDet: Meta Learning to Generate Detectors From Few Shots

探测器 计算机科学 联营 发电机(电路理论) 人工智能 目标检测 一般化 单发 弹丸 模式识别(心理学) 班级(哲学) 对象(语法) 机器学习 计算机视觉 功率(物理) 数学 数学分析 物理 光学 有机化学 化学 电信 量子力学
作者
Liyang Liu,Bochao Wang,Zhanghui Kuang,Jing‐Hao Xue,Yimin Chen,Wenming Yang,Qingmin Liao,Wei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3448-3460 被引量:24
标识
DOI:10.1109/tnnls.2021.3053005
摘要

Object detection has made enormous progress and has been widely used in many applications. However, it performs poorly when only limited training data is available for novel classes that the model has never seen before. Most existing approaches solve few-shot detection tasks implicitly without directly modeling the detectors for novel classes. In this article, we propose GenDet, a new meta-learning-based framework that can effectively generate object detectors for novel classes from few shots and, thus, conducts few-shot detection tasks explicitly. The detector generator is trained by numerous few-shot detection tasks sampled from base classes each with sufficient samples, and thus, it is expected to generalize well on novel classes. An adaptive pooling module is further introduced to suppress distracting samples and aggregate the detectors generated from multiple shots. Moreover, we propose to train a reference detector for each base class in the conventional way, with which to guide the training of the detector generator. The reference detectors and the detector generator can be trained simultaneously. Finally, the generated detectors of different classes are encouraged to be orthogonal to each other for better generalization. The proposed approach is extensively evaluated on the ImageNet, VOC, and COCO data sets under various few-shot detection settings, and it achieves new state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
陈曦发布了新的文献求助10
3秒前
修辛发布了新的文献求助10
6秒前
佳佳应助好好好采纳,获得10
7秒前
Ava应助等一只ya采纳,获得10
9秒前
10秒前
11秒前
RA000完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
科研通AI5应助YJ888采纳,获得10
13秒前
是安山完成签到,获得积分10
13秒前
是安山发布了新的文献求助10
15秒前
15秒前
15秒前
YanK发布了新的文献求助10
16秒前
归尘发布了新的文献求助10
17秒前
Jay发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
老干部发布了新的文献求助10
19秒前
陈曦发布了新的文献求助10
19秒前
wweiweili完成签到,获得积分10
22秒前
22秒前
22秒前
hmd_150发布了新的文献求助10
22秒前
Sophiaye完成签到,获得积分10
23秒前
风趣依瑶完成签到 ,获得积分10
23秒前
wonder123发布了新的文献求助10
23秒前
Kavin完成签到,获得积分10
24秒前
KK关闭了KK文献求助
25秒前
大模型应助YanK采纳,获得10
25秒前
25秒前
等一只ya发布了新的文献求助10
25秒前
25秒前
修辛发布了新的文献求助10
25秒前
CipherSage应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176