GenDet: Meta Learning to Generate Detectors From Few Shots

探测器 计算机科学 联营 发电机(电路理论) 人工智能 目标检测 一般化 单发 弹丸 模式识别(心理学) 机器学习 计算机视觉 功率(物理) 数学 数学分析 有机化学 化学 物理 光学 电信 量子力学
作者
Liyang Liu,Bochao Wang,Zhen‐Bang Kuang,Jing-Hao Xue,Yimin Chen,Wenming Yang,Qingmin Liao,Wayne Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3448-3460 被引量:14
标识
DOI:10.1109/tnnls.2021.3053005
摘要

Object detection has made enormous progress and has been widely used in many applications. However, it performs poorly when only limited training data is available for novel classes that the model has never seen before. Most existing approaches solve few-shot detection tasks implicitly without directly modeling the detectors for novel classes. In this article, we propose GenDet, a new meta-learning-based framework that can effectively generate object detectors for novel classes from few shots and, thus, conducts few-shot detection tasks explicitly. The detector generator is trained by numerous few-shot detection tasks sampled from base classes each with sufficient samples, and thus, it is expected to generalize well on novel classes. An adaptive pooling module is further introduced to suppress distracting samples and aggregate the detectors generated from multiple shots. Moreover, we propose to train a reference detector for each base class in the conventional way, with which to guide the training of the detector generator. The reference detectors and the detector generator can be trained simultaneously. Finally, the generated detectors of different classes are encouraged to be orthogonal to each other for better generalization. The proposed approach is extensively evaluated on the ImageNet, VOC, and COCO data sets under various few-shot detection settings, and it achieves new state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀豪英发布了新的文献求助10
1秒前
4秒前
5秒前
777应助默默的雁菡采纳,获得10
6秒前
7秒前
栀然完成签到,获得积分10
8秒前
聪明短靴完成签到,获得积分10
9秒前
10秒前
yoyo完成签到 ,获得积分10
10秒前
从容的元绿关注了科研通微信公众号
11秒前
12秒前
12秒前
十八完成签到,获得积分10
12秒前
光影发布了新的文献求助10
12秒前
gj2221423发布了新的文献求助10
13秒前
14秒前
14秒前
明理文龙发布了新的文献求助10
14秒前
17秒前
叶123发布了新的文献求助10
17秒前
GAO发布了新的文献求助10
17秒前
17秒前
17秒前
华仔应助康康采纳,获得10
18秒前
感动归尘发布了新的文献求助10
18秒前
Akim应助cbx采纳,获得10
18秒前
缥缈傥发布了新的文献求助10
20秒前
英姑应助feiqi采纳,获得10
20秒前
feezy发布了新的文献求助30
21秒前
自信的坤发布了新的文献求助10
21秒前
sss2021发布了新的文献求助10
22秒前
22秒前
23秒前
GAO完成签到,获得积分10
24秒前
粱夏烟发布了新的文献求助10
25秒前
西门吹泡泡完成签到 ,获得积分10
26秒前
woxiangbiye发布了新的文献求助10
27秒前
感动归尘完成签到,获得积分10
28秒前
29秒前
叶123完成签到,获得积分10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310041
求助须知:如何正确求助?哪些是违规求助? 2943138
关于积分的说明 8512742
捐赠科研通 2618304
什么是DOI,文献DOI怎么找? 1431024
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649540