材料科学
共聚物
聚合物
共轭体系
富勒烯
噻吩
聚合物太阳能电池
化学工程
能量转换效率
形态学(生物学)
纳米技术
高分子化学
有机化学
化学
光电子学
复合材料
生物
工程类
遗传学
作者
Tao Zhang,Cunbin An,Qianglong Lv,Jinzhao Qin,Yong Cui,Zhong Zheng,Bowei Xu,Shaoqing Zhang,Jianqi Zhang,Chang He,Jianhui Hou
标识
DOI:10.1016/j.jechem.2020.11.021
摘要
Compared to regular conjugated polymers, the random conjugated terpolymers are usually not beneficial to achieve highly efficient non-fullerene (NF)-based polymer solar cells (PSCs) due to their disordered chemical structures. In this work, we report two random terpolymer donors (PBNB80 and PBNB50) by tuning the molar ratio of electron-accepting units of 1,3-di(thiophen-2-yl)naphtho[2,3-c]thiophene-4,9-dione (NTD) and 1,3-bis(4-chlorothiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione (Cl-BDD), at the same time, the parent polymers (PBNB100 and PBNB00) are also compared to study. These four polymer donors exhibit similar optical bandgaps and gradually deepen highest occupied molecular orbital levels. Importantly, aggregation and self-organization properties of the random terpolymer donors are optimized, which result in the better morphology and crystal coherence length after blending with NF acceptor of BO-4Cl. Particularly, a PBNB80:BO-4Cl blend forms an optimal nanoscale phase-separation morphology, thereby producing an outstanding power conversion efficiency of 16.0%, which is much higher than those (12.8% and 10.7%) of their parent binary polymer donor-based devices. This work demonstrates that rational using terpolymerization strategy to prepare random terpolymer is a very important method to achieve highly efficient NF-PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI