Machine Learning Applications for Precision Agriculture: A Comprehensive Review

精准农业 农业 农业工程 计算机科学 人口 持续性 可持续农业 农业生产力 土壤质量 生产力 人工智能 工程类 生物 宏观经济学 社会学 人口学 经济 生态学
作者
Abhinav Sharma,Arpit Jain,Prateek Gupta,Vinay Chowdary
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 4843-4873 被引量:598
标识
DOI:10.1109/access.2020.3048415
摘要

Agriculture plays a vital role in the economic growth of any country. With the increase of population, frequent changes in climatic conditions and limited resources, it becomes a challenging task to fulfil the food requirement of the present population. Precision agriculture also known as smart farming have emerged as an innovative tool to address current challenges in agricultural sustainability. The mechanism that drives this cutting edge technology is machine learning (ML). It gives the machine ability to learn without being explicitly programmed. ML together with IoT (Internet of Things) enabled farm machinery are key components of the next agriculture revolution. In this article, authors present a systematic review of ML applications in the field of agriculture. The areas that are focused are prediction of soil parameters such as organic carbon and moisture content, crop yield prediction, disease and weed detection in crops and species detection. ML with computer vision are reviewed for the classification of a different set of crop images in order to monitor the crop quality and yield assessment. This approach can be integrated for enhanced livestock production by predicting fertility patterns, diagnosing eating disorders, cattle behaviour based on ML models using data collected by collar sensors, etc. Intelligent irrigation which includes drip irrigation and intelligent harvesting techniques are also reviewed that reduces human labour to a great extent. This article demonstrates how knowledge-based agriculture can improve the sustainable productivity and quality of the product.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智芝应助艺成成采纳,获得10
3秒前
俊逸书琴应助鬼才之眼采纳,获得10
4秒前
李子兄关注了科研通微信公众号
5秒前
5秒前
科研通AI2S应助唠叨的三问采纳,获得10
5秒前
赘婿应助否认冶游史采纳,获得10
7秒前
8秒前
Steven发布了新的文献求助100
9秒前
邓谷云发布了新的文献求助10
11秒前
樊傲云发布了新的文献求助10
11秒前
爱云完成签到,获得积分10
12秒前
wlywly发布了新的文献求助10
13秒前
木光完成签到,获得积分10
14秒前
my完成签到,获得积分10
14秒前
basilbrush完成签到,获得积分10
15秒前
小肥完成签到,获得积分10
15秒前
scenery0510完成签到,获得积分10
16秒前
王琳完成签到,获得积分10
17秒前
李子兄发布了新的文献求助50
19秒前
20秒前
20秒前
小马甲应助Zhang采纳,获得10
21秒前
善学以致用应助LightFlash采纳,获得10
23秒前
24秒前
24秒前
名丿发布了新的文献求助10
24秒前
科研通AI2S应助粗心的忆山采纳,获得10
27秒前
Ventus完成签到,获得积分10
28秒前
江上清风游完成签到,获得积分10
30秒前
30秒前
古藤完成签到 ,获得积分10
32秒前
FashionBoy应助细心珠采纳,获得10
34秒前
34秒前
laxy完成签到 ,获得积分10
34秒前
桐桐应助zhangchunhui采纳,获得10
35秒前
popcoming完成签到,获得积分10
36秒前
光亮元枫发布了新的文献求助10
36秒前
机智芝应助仙道彰-7采纳,获得10
37秒前
38秒前
李健的粉丝团团长应助cc采纳,获得10
39秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378475
求助须知:如何正确求助?哪些是违规求助? 2994067
关于积分的说明 8757495
捐赠科研通 2678534
什么是DOI,文献DOI怎么找? 1467254
科研通“疑难数据库(出版商)”最低求助积分说明 678632
邀请新用户注册赠送积分活动 670229