Rational Design of High-Energy-Density Polymer Composites by Machine Learning Approach

材料科学 复合材料 电介质 介电常数 纳米线 聚合物 复合数 纳米技术 光电子学
作者
Ming‐Xiao Zhu,Qiu-Cheng Yu,Heng-Gao Song,Ting-Xin Chen,Jiming Chen
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (2): 1449-1458 被引量:23
标识
DOI:10.1021/acsaem.0c02647
摘要

Rationally designing polymer composite structures, including physical parameters of nanofillers, nanofiller–matrix interface characteristics, and geometric distribution of nanofillers, is thought to be an effective approach to achieve the desired dielectric properties such as breakdown strength (Eb), permittivity (εr), and energy density (Ue) in wide applications. However, the work is difficult to complete through merely high-cost and time-consuming trial-and-error experiments. A machine learning (ML) driven approach, trained on hundreds of experimentally measured data, is presented to rationally design polymer composites with desired properties. The doping scheme of nanofillers is fingerprinted with a string of characters considering the physical parameters, shape, distribution of fillers, and shell properties in core–shell structures, and then the Gaussian process regression algorithm is trained to establish the linkage between the filler doping scheme and the dielectric properties. The dielectric properties of the randomly generated tens of millions of candidate composites are calculated with the resulting ML model, and representative composites with high Eb, εr, and Ue are presented. The results indicate that the effects of nanofiller permittivity and bandgap on Eb and εr follow exactly the opposite trend, hence it is difficult to simultaneously improve Eb and εr by choosing the type of nanofiller. Fortunately, the trade-off between Eb and εr can be improved by tailoring the shape, orientation, and distribution of the nanofillers, for instance, by using horizontally orientated nanosheets and orthotropic nanowires with high permittivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你的左轮呢完成签到,获得积分10
1秒前
1秒前
Bridge发布了新的文献求助10
1秒前
qin发布了新的文献求助10
1秒前
2秒前
研友_VZG7GZ应助吗喽采纳,获得10
2秒前
852应助ya采纳,获得10
2秒前
apiaji应助Ss采纳,获得20
2秒前
F_u完成签到,获得积分10
2秒前
囙氼仚完成签到,获得积分10
2秒前
2秒前
3秒前
qda关闭了qda文献求助
3秒前
科研通AI6应助55555558采纳,获得10
3秒前
Owen应助野性的沉鱼采纳,获得10
4秒前
上官若男应助Nymeria采纳,获得30
4秒前
4秒前
唠叨的谷秋完成签到,获得积分20
4秒前
闪耀章鱼发布了新的文献求助10
4秒前
李文浩发布了新的文献求助10
5秒前
彭秋期完成签到,获得积分20
5秒前
一切皆有利于我完成签到,获得积分10
5秒前
5秒前
5秒前
归尘发布了新的文献求助10
5秒前
漂亮幻然完成签到,获得积分10
5秒前
5秒前
林夏完成签到,获得积分10
6秒前
爆米花应助我想静静采纳,获得100
6秒前
6秒前
6秒前
6秒前
7秒前
qweqwe完成签到,获得积分10
7秒前
沉默寄凡发布了新的文献求助10
7秒前
汤飞柏发布了新的文献求助10
8秒前
酷炫的忆山完成签到,获得积分10
8秒前
科研小白发布了新的文献求助10
8秒前
iAlvinz完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873