Rational Design of High-Energy-Density Polymer Composites by Machine Learning Approach

材料科学 复合材料 电介质 介电常数 纳米线 聚合物 复合数 纳米技术 光电子学
作者
Ming‐Xiao Zhu,Qiu-Cheng Yu,Heng-Gao Song,Ting-Xin Chen,Jiming Chen
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (2): 1449-1458 被引量:23
标识
DOI:10.1021/acsaem.0c02647
摘要

Rationally designing polymer composite structures, including physical parameters of nanofillers, nanofiller–matrix interface characteristics, and geometric distribution of nanofillers, is thought to be an effective approach to achieve the desired dielectric properties such as breakdown strength (Eb), permittivity (εr), and energy density (Ue) in wide applications. However, the work is difficult to complete through merely high-cost and time-consuming trial-and-error experiments. A machine learning (ML) driven approach, trained on hundreds of experimentally measured data, is presented to rationally design polymer composites with desired properties. The doping scheme of nanofillers is fingerprinted with a string of characters considering the physical parameters, shape, distribution of fillers, and shell properties in core–shell structures, and then the Gaussian process regression algorithm is trained to establish the linkage between the filler doping scheme and the dielectric properties. The dielectric properties of the randomly generated tens of millions of candidate composites are calculated with the resulting ML model, and representative composites with high Eb, εr, and Ue are presented. The results indicate that the effects of nanofiller permittivity and bandgap on Eb and εr follow exactly the opposite trend, hence it is difficult to simultaneously improve Eb and εr by choosing the type of nanofiller. Fortunately, the trade-off between Eb and εr can be improved by tailoring the shape, orientation, and distribution of the nanofillers, for instance, by using horizontally orientated nanosheets and orthotropic nanowires with high permittivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助不会游泳的鱼采纳,获得10
1秒前
奋斗的孤风关注了科研通微信公众号
1秒前
wisper发布了新的文献求助10
1秒前
2秒前
zhancon完成签到,获得积分10
3秒前
新闻联播发布了新的文献求助10
3秒前
乐乐应助肖静茹采纳,获得30
3秒前
3秒前
4秒前
5秒前
深情安青应助Ode采纳,获得10
5秒前
失眠成危完成签到,获得积分10
6秒前
LWJ发布了新的文献求助30
6秒前
kyrry完成签到,获得积分10
7秒前
无奈海菡发布了新的文献求助10
8秒前
陈艺鹏完成签到,获得积分10
8秒前
酷波er应助邢文瑞采纳,获得10
10秒前
10秒前
Akim应助pokexuejiao采纳,获得20
10秒前
11秒前
12秒前
科研通AI2S应助myy采纳,获得10
12秒前
13秒前
无奈海菡完成签到,获得积分10
16秒前
17秒前
LWJ发布了新的文献求助10
17秒前
天天完成签到 ,获得积分10
17秒前
HHH发布了新的文献求助10
17秒前
18秒前
Heart发布了新的文献求助10
19秒前
图治发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
淡定的勒发布了新的文献求助20
21秒前
WangSanSan完成签到,获得积分10
21秒前
HHH完成签到,获得积分10
21秒前
852应助不会游泳的鱼采纳,获得10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459