已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rational Design of High-Energy-Density Polymer Composites by Machine Learning Approach

材料科学 复合材料 电介质 介电常数 纳米线 聚合物 复合数 纳米技术 光电子学
作者
Ming‐Xiao Zhu,Qiu-Cheng Yu,Heng-Gao Song,Ting-Xin Chen,Jiming Chen
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (2): 1449-1458 被引量:23
标识
DOI:10.1021/acsaem.0c02647
摘要

Rationally designing polymer composite structures, including physical parameters of nanofillers, nanofiller–matrix interface characteristics, and geometric distribution of nanofillers, is thought to be an effective approach to achieve the desired dielectric properties such as breakdown strength (Eb), permittivity (εr), and energy density (Ue) in wide applications. However, the work is difficult to complete through merely high-cost and time-consuming trial-and-error experiments. A machine learning (ML) driven approach, trained on hundreds of experimentally measured data, is presented to rationally design polymer composites with desired properties. The doping scheme of nanofillers is fingerprinted with a string of characters considering the physical parameters, shape, distribution of fillers, and shell properties in core–shell structures, and then the Gaussian process regression algorithm is trained to establish the linkage between the filler doping scheme and the dielectric properties. The dielectric properties of the randomly generated tens of millions of candidate composites are calculated with the resulting ML model, and representative composites with high Eb, εr, and Ue are presented. The results indicate that the effects of nanofiller permittivity and bandgap on Eb and εr follow exactly the opposite trend, hence it is difficult to simultaneously improve Eb and εr by choosing the type of nanofiller. Fortunately, the trade-off between Eb and εr can be improved by tailoring the shape, orientation, and distribution of the nanofillers, for instance, by using horizontally orientated nanosheets and orthotropic nanowires with high permittivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
everglow发布了新的文献求助30
1秒前
2秒前
Cwx2020完成签到,获得积分10
3秒前
zwhy完成签到,获得积分10
4秒前
寒冷的秋尽完成签到,获得积分10
4秒前
everglow完成签到,获得积分10
5秒前
Jupiter应助机灵桐采纳,获得30
5秒前
6秒前
苹果鸽子关注了科研通微信公众号
7秒前
8秒前
11秒前
Akim应助feeelicette采纳,获得10
11秒前
程风破浪发布了新的文献求助30
11秒前
13秒前
循循完成签到,获得积分10
13秒前
调研昵称发布了新的文献求助10
14秒前
万能图书馆应助lyz666采纳,获得10
19秒前
东尧完成签到 ,获得积分10
20秒前
追寻地坛发布了新的文献求助10
21秒前
小诸葛发布了新的文献求助10
23秒前
Hello应助muxi暮夕采纳,获得10
23秒前
科目三应助研友_LMBPXn采纳,获得10
24秒前
谨慎的映寒给不知道叫啥的求助进行了留言
27秒前
31秒前
32秒前
虚幻世德发布了新的文献求助30
33秒前
SEAMUS发布了新的文献求助10
34秒前
39秒前
muxi暮夕发布了新的文献求助10
42秒前
42秒前
顾矜应助科yt采纳,获得10
44秒前
鲨鱼也蛀牙完成签到,获得积分10
44秒前
小吴同志发布了新的文献求助10
45秒前
wmm完成签到 ,获得积分10
45秒前
47秒前
寂漉完成签到,获得积分10
47秒前
50秒前
50秒前
SEAMUS完成签到,获得积分10
50秒前
李爱国应助大树守卫采纳,获得10
52秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129961
求助须知:如何正确求助?哪些是违规求助? 2780706
关于积分的说明 7749763
捐赠科研通 2436010
什么是DOI,文献DOI怎么找? 1294449
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570