已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rational Design of High-Energy-Density Polymer Composites by Machine Learning Approach

材料科学 复合材料 电介质 介电常数 纳米线 聚合物 复合数 纳米技术 光电子学
作者
Ming‐Xiao Zhu,Qiu-Cheng Yu,Heng-Gao Song,Ting-Xin Chen,Jiming Chen
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (2): 1449-1458 被引量:23
标识
DOI:10.1021/acsaem.0c02647
摘要

Rationally designing polymer composite structures, including physical parameters of nanofillers, nanofiller–matrix interface characteristics, and geometric distribution of nanofillers, is thought to be an effective approach to achieve the desired dielectric properties such as breakdown strength (Eb), permittivity (εr), and energy density (Ue) in wide applications. However, the work is difficult to complete through merely high-cost and time-consuming trial-and-error experiments. A machine learning (ML) driven approach, trained on hundreds of experimentally measured data, is presented to rationally design polymer composites with desired properties. The doping scheme of nanofillers is fingerprinted with a string of characters considering the physical parameters, shape, distribution of fillers, and shell properties in core–shell structures, and then the Gaussian process regression algorithm is trained to establish the linkage between the filler doping scheme and the dielectric properties. The dielectric properties of the randomly generated tens of millions of candidate composites are calculated with the resulting ML model, and representative composites with high Eb, εr, and Ue are presented. The results indicate that the effects of nanofiller permittivity and bandgap on Eb and εr follow exactly the opposite trend, hence it is difficult to simultaneously improve Eb and εr by choosing the type of nanofiller. Fortunately, the trade-off between Eb and εr can be improved by tailoring the shape, orientation, and distribution of the nanofillers, for instance, by using horizontally orientated nanosheets and orthotropic nanowires with high permittivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuchaoJia发布了新的文献求助10
刚刚
笨蛋搞笑女完成签到 ,获得积分10
1秒前
2秒前
自强不息完成签到 ,获得积分10
4秒前
石墨发布了新的文献求助10
8秒前
坦率完成签到,获得积分10
10秒前
TT完成签到,获得积分10
11秒前
heyan完成签到,获得积分10
12秒前
石墨完成签到,获得积分10
15秒前
CodeCraft应助Tanya采纳,获得10
16秒前
FSDF完成签到,获得积分10
17秒前
南寅完成签到,获得积分10
17秒前
任性的幻儿完成签到 ,获得积分10
18秒前
sss完成签到 ,获得积分10
19秒前
smile完成签到 ,获得积分10
22秒前
派大星和海绵宝宝完成签到,获得积分10
23秒前
冰西瓜完成签到 ,获得积分0
23秒前
24秒前
Suaia完成签到,获得积分10
25秒前
爱笑的映冬完成签到 ,获得积分10
26秒前
專注完美近乎苛求完成签到 ,获得积分10
28秒前
852应助wanying采纳,获得10
28秒前
29秒前
阳光皮带完成签到,获得积分10
29秒前
Charles完成签到,获得积分0
29秒前
摇滚蜗牛完成签到,获得积分10
30秒前
32秒前
34秒前
Tanya完成签到,获得积分10
36秒前
37秒前
任无血完成签到,获得积分10
39秒前
doctor2023完成签到,获得积分10
40秒前
42秒前
小蘑菇应助guard采纳,获得20
44秒前
47秒前
48秒前
晟sheng完成签到 ,获得积分10
48秒前
G13完成签到,获得积分20
49秒前
奋进的熊发布了新的文献求助10
50秒前
guard发布了新的文献求助10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426218
求助须知:如何正确求助?哪些是违规求助? 4539957
关于积分的说明 14171259
捐赠科研通 4457794
什么是DOI,文献DOI怎么找? 2444671
邀请新用户注册赠送积分活动 1435605
关于科研通互助平台的介绍 1413123