已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rational Design of High-Energy-Density Polymer Composites by Machine Learning Approach

材料科学 复合材料 电介质 介电常数 纳米线 聚合物 复合数 纳米技术 光电子学
作者
Ming‐Xiao Zhu,Qiu-Cheng Yu,Heng-Gao Song,Ting-Xin Chen,Jiming Chen
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (2): 1449-1458 被引量:23
标识
DOI:10.1021/acsaem.0c02647
摘要

Rationally designing polymer composite structures, including physical parameters of nanofillers, nanofiller–matrix interface characteristics, and geometric distribution of nanofillers, is thought to be an effective approach to achieve the desired dielectric properties such as breakdown strength (Eb), permittivity (εr), and energy density (Ue) in wide applications. However, the work is difficult to complete through merely high-cost and time-consuming trial-and-error experiments. A machine learning (ML) driven approach, trained on hundreds of experimentally measured data, is presented to rationally design polymer composites with desired properties. The doping scheme of nanofillers is fingerprinted with a string of characters considering the physical parameters, shape, distribution of fillers, and shell properties in core–shell structures, and then the Gaussian process regression algorithm is trained to establish the linkage between the filler doping scheme and the dielectric properties. The dielectric properties of the randomly generated tens of millions of candidate composites are calculated with the resulting ML model, and representative composites with high Eb, εr, and Ue are presented. The results indicate that the effects of nanofiller permittivity and bandgap on Eb and εr follow exactly the opposite trend, hence it is difficult to simultaneously improve Eb and εr by choosing the type of nanofiller. Fortunately, the trade-off between Eb and εr can be improved by tailoring the shape, orientation, and distribution of the nanofillers, for instance, by using horizontally orientated nanosheets and orthotropic nanowires with high permittivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王平安完成签到 ,获得积分10
1秒前
Sdpol完成签到,获得积分10
1秒前
汪姝发布了新的文献求助10
1秒前
星辰大海应助Xx采纳,获得10
5秒前
田様应助逆天大脚采纳,获得10
7秒前
漂亮糖豆完成签到 ,获得积分10
9秒前
12秒前
zw完成签到 ,获得积分10
13秒前
oshunne发布了新的文献求助80
15秒前
ZH完成签到 ,获得积分10
16秒前
Sixth_GOD完成签到,获得积分10
18秒前
芊芊君子发布了新的文献求助20
18秒前
杨易完成签到 ,获得积分10
20秒前
谦让的冰海完成签到,获得积分10
23秒前
立麦完成签到 ,获得积分10
23秒前
小歘歘完成签到 ,获得积分10
24秒前
25秒前
26秒前
研友_VZG7GZ应助诸天真采纳,获得10
26秒前
29秒前
逆天大脚发布了新的文献求助10
30秒前
小蘑菇应助大喵采纳,获得10
31秒前
Kristine完成签到 ,获得积分10
33秒前
VV2001发布了新的文献求助10
35秒前
Ying完成签到,获得积分10
38秒前
39秒前
dream完成签到 ,获得积分10
40秒前
40秒前
梁吃鱼完成签到,获得积分10
41秒前
41秒前
闲听花落完成签到,获得积分10
41秒前
Fng11发布了新的文献求助20
41秒前
我不到啊完成签到 ,获得积分10
42秒前
陈谦嵩完成签到 ,获得积分10
43秒前
Krim完成签到 ,获得积分0
43秒前
VV2001完成签到,获得积分10
43秒前
时尚白凡完成签到 ,获得积分10
43秒前
大喵发布了新的文献求助10
44秒前
搜集达人应助朴素的闭月采纳,获得10
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258