Rational Design of High-Energy-Density Polymer Composites by Machine Learning Approach

材料科学 复合材料 电介质 介电常数 纳米线 聚合物 复合数 纳米技术 光电子学
作者
Ming‐Xiao Zhu,Qiu-Cheng Yu,Heng-Gao Song,Ting-Xin Chen,Jiming Chen
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (2): 1449-1458 被引量:23
标识
DOI:10.1021/acsaem.0c02647
摘要

Rationally designing polymer composite structures, including physical parameters of nanofillers, nanofiller–matrix interface characteristics, and geometric distribution of nanofillers, is thought to be an effective approach to achieve the desired dielectric properties such as breakdown strength (Eb), permittivity (εr), and energy density (Ue) in wide applications. However, the work is difficult to complete through merely high-cost and time-consuming trial-and-error experiments. A machine learning (ML) driven approach, trained on hundreds of experimentally measured data, is presented to rationally design polymer composites with desired properties. The doping scheme of nanofillers is fingerprinted with a string of characters considering the physical parameters, shape, distribution of fillers, and shell properties in core–shell structures, and then the Gaussian process regression algorithm is trained to establish the linkage between the filler doping scheme and the dielectric properties. The dielectric properties of the randomly generated tens of millions of candidate composites are calculated with the resulting ML model, and representative composites with high Eb, εr, and Ue are presented. The results indicate that the effects of nanofiller permittivity and bandgap on Eb and εr follow exactly the opposite trend, hence it is difficult to simultaneously improve Eb and εr by choosing the type of nanofiller. Fortunately, the trade-off between Eb and εr can be improved by tailoring the shape, orientation, and distribution of the nanofillers, for instance, by using horizontally orientated nanosheets and orthotropic nanowires with high permittivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANCY完成签到,获得积分10
2秒前
Orange应助ning采纳,获得10
2秒前
2秒前
飞飞发布了新的文献求助10
2秒前
3秒前
Battery-Li完成签到,获得积分10
3秒前
IN完成签到,获得积分10
3秒前
Hao发布了新的文献求助10
3秒前
科目三应助zhhyi1976采纳,获得10
3秒前
HOAN应助常泽洋122采纳,获得20
4秒前
4秒前
4秒前
Zinia应助www采纳,获得10
4秒前
wsuser发布了新的文献求助10
5秒前
zzkkl发布了新的文献求助10
5秒前
lkx完成签到 ,获得积分10
5秒前
IN发布了新的文献求助30
6秒前
科研通AI2S应助难过的蜜粉采纳,获得10
7秒前
平凡之路发布了新的文献求助10
7秒前
7秒前
诺奇完成签到,获得积分10
7秒前
Hello应助Sew东坡采纳,获得10
7秒前
波西米亚完成签到,获得积分10
7秒前
赘婿应助ANCY采纳,获得30
7秒前
是但求其爱完成签到,获得积分10
8秒前
猫咪完成签到,获得积分10
8秒前
00928完成签到,获得积分10
9秒前
谦谦完成签到,获得积分10
9秒前
英姑应助QiQi采纳,获得10
9秒前
热情嘉懿发布了新的文献求助10
9秒前
小飞侠来咯完成签到,获得积分10
10秒前
hyn完成签到,获得积分20
10秒前
烦烦烦发布了新的文献求助10
11秒前
抱抱你完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
13秒前
长情墨镜发布了新的文献求助10
13秒前
慕青应助Kitty采纳,获得10
13秒前
新新完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586