酉矩阵
单一制国家
趋同(经济学)
计算机科学
光子学
基质(化学分析)
圆形合奏
初始化
可扩展性
加速
波导管
算法
拓扑(电路)
并行计算
数学
物理
量子力学
材料科学
组合数学
复合材料
经济
政治学
数据库
程序设计语言
法学
经济增长
作者
Sunil Pai,Ben Bartlett,Olav Solgaard,David A. B. Miller
出处
期刊:Physical review applied
[American Physical Society]
日期:2019-06-19
卷期号:11 (6)
被引量:127
标识
DOI:10.1103/physrevapplied.11.064044
摘要
Universal unitary photonic devices can apply arbitrary unitary transformations to a vector of input modes and provide a promising hardware platform for fast and energy-efficient machine learning using light. We simulate the gradient-based optimization of random unitary matrices on universal photonic devices composed of imperfect tunable interferometers. If device components are initialized uniform-randomly, the locally-interacting nature of the mesh components biases the optimization search space towards banded unitary matrices, limiting convergence to random unitary matrices. We detail a procedure for initializing the device by sampling from the distribution of random unitary matrices and show that this greatly improves convergence speed. We also explore mesh architecture improvements such as adding extra tunable beamsplitters or permuting waveguide layers to further improve the training speed and scalability of these devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI