Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study

药物重新定位 计算机科学 概率逻辑 药品 矩阵分解 非负矩阵分解 邻接矩阵 药物发现 相似性(几何) 人工智能 计算生物学 数据挖掘 机器学习 理论计算机科学 生物信息学 生物 药理学 图像(数学) 物理 图形 特征向量 量子力学
作者
Yajie Meng,Min Jin,Xianfang Tang,Junlin Xu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:103: 107135-107135 被引量:46
标识
DOI:10.1016/j.asoc.2021.107135
摘要

The novel coronavirus disease 2019 (COVID-19) pandemic has caused a massive health crisis worldwide and upended the global economy. However, vaccines and traditional drug discovery for COVID-19 cost too much in terms of time, manpower, and money. Drug repurposing becomes one of the promising treatment strategies amid the COVID-19 crisis. At present, there are no publicly existing databases for experimentally supported human drug–virus interactions, and most existing drug repurposing methods require the rich information, which is not always available, especially for a new virus. In this study, on the one hand, we put size-able efforts to collect drug–virus interaction entries from literature and build the Human Drug Virus Database (HDVD). On the other hand, we propose a new approach, called SCPMF (similarity constrained probabilistic matrix factorization), to identify new drug–virus interactions for drug repurposing. SCPMF is implemented on an adjacency matrix of a heterogeneous drug–virus network, which integrates the known drug–virus interactions, drug chemical structures, and virus genomic sequences. SCPMF projects the drug–virus interactions matrix into two latent feature matrices for the drugs and viruses, which reconstruct the drug–virus interactions matrix when multiplied together, and then introduces the weighted similarity interaction matrix as constraints for drugs and viruses. Benchmarking comparisons on two different datasets demonstrate that SCPMF has reliable prediction performance and outperforms several recent approaches. Moreover, SCPMF-predicted drug candidates of COVID-19 also confirm the accuracy and reliability of SCPMF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
子小孙完成签到,获得积分10
2秒前
yongtao发布了新的文献求助10
2秒前
FP发布了新的文献求助10
3秒前
沉沉完成签到 ,获得积分0
4秒前
4秒前
冰销雪释完成签到,获得积分10
4秒前
在水一方应助djy采纳,获得10
5秒前
Or1ll完成签到,获得积分10
5秒前
Mtx3098520564发布了新的文献求助30
6秒前
lunar发布了新的文献求助10
6秒前
7秒前
ding应助leeyc采纳,获得10
7秒前
7秒前
脑洞疼应助醉熏的雁玉采纳,获得10
7秒前
7秒前
失眠百川发布了新的文献求助10
8秒前
8秒前
orixero应助yongtao采纳,获得10
9秒前
橙子皮发布了新的文献求助10
10秒前
Jasmine发布了新的文献求助10
10秒前
dyan发布了新的文献求助10
11秒前
李健的小迷弟应助Dominic采纳,获得10
11秒前
11秒前
abai完成签到,获得积分10
12秒前
12秒前
东郭凌波完成签到,获得积分10
12秒前
充电宝应助宣仰采纳,获得10
13秒前
图灵桑发布了新的文献求助10
13秒前
Yanping完成签到,获得积分10
13秒前
14秒前
14秒前
zdesfsfa完成签到,获得积分10
14秒前
15秒前
15秒前
tiantiantian发布了新的文献求助10
15秒前
隐形曼青应助Jasmine采纳,获得10
16秒前
忧伤的糜发布了新的文献求助10
17秒前
卡布发布了新的文献求助10
17秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971216
求助须知:如何正确求助?哪些是违规求助? 3515911
关于积分的说明 11180016
捐赠科研通 3251003
什么是DOI,文献DOI怎么找? 1795626
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805207