Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study

药物重新定位 计算机科学 概率逻辑 药品 矩阵分解 非负矩阵分解 邻接矩阵 药物发现 相似性(几何) 人工智能 计算生物学 数据挖掘 机器学习 理论计算机科学 生物信息学 生物 药理学 图形 特征向量 物理 图像(数学) 量子力学
作者
Yajie Meng,Min Jin,Xianfang Tang,Junlin Xu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:103: 107135-107135 被引量:46
标识
DOI:10.1016/j.asoc.2021.107135
摘要

The novel coronavirus disease 2019 (COVID-19) pandemic has caused a massive health crisis worldwide and upended the global economy. However, vaccines and traditional drug discovery for COVID-19 cost too much in terms of time, manpower, and money. Drug repurposing becomes one of the promising treatment strategies amid the COVID-19 crisis. At present, there are no publicly existing databases for experimentally supported human drug–virus interactions, and most existing drug repurposing methods require the rich information, which is not always available, especially for a new virus. In this study, on the one hand, we put size-able efforts to collect drug–virus interaction entries from literature and build the Human Drug Virus Database (HDVD). On the other hand, we propose a new approach, called SCPMF (similarity constrained probabilistic matrix factorization), to identify new drug–virus interactions for drug repurposing. SCPMF is implemented on an adjacency matrix of a heterogeneous drug–virus network, which integrates the known drug–virus interactions, drug chemical structures, and virus genomic sequences. SCPMF projects the drug–virus interactions matrix into two latent feature matrices for the drugs and viruses, which reconstruct the drug–virus interactions matrix when multiplied together, and then introduces the weighted similarity interaction matrix as constraints for drugs and viruses. Benchmarking comparisons on two different datasets demonstrate that SCPMF has reliable prediction performance and outperforms several recent approaches. Moreover, SCPMF-predicted drug candidates of COVID-19 also confirm the accuracy and reliability of SCPMF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
本末倒纸完成签到 ,获得积分10
1秒前
wbscz应助星辰采纳,获得10
1秒前
toxikon发布了新的文献求助10
2秒前
3秒前
5秒前
大模型应助剁辣椒蒸鱼头采纳,获得20
5秒前
小北完成签到 ,获得积分10
5秒前
6秒前
高挑的冰露完成签到 ,获得积分10
9秒前
ruochenzu发布了新的文献求助10
9秒前
老李完成签到,获得积分10
9秒前
10秒前
11秒前
tough_cookie完成签到 ,获得积分10
12秒前
彩钢房完成签到,获得积分10
13秒前
MeSs完成签到 ,获得积分10
14秒前
toxikon完成签到,获得积分10
15秒前
一点通完成签到,获得积分10
15秒前
Lei完成签到,获得积分10
16秒前
16秒前
16秒前
常若冰完成签到,获得积分10
16秒前
纯真的元风完成签到,获得积分10
17秒前
哇哈哈哈完成签到,获得积分10
17秒前
清秋1001完成签到 ,获得积分10
18秒前
qq完成签到,获得积分10
19秒前
荒野风发布了新的文献求助10
20秒前
Zxx发布了新的文献求助10
21秒前
22秒前
22秒前
确幸完成签到 ,获得积分10
22秒前
苒苒完成签到,获得积分10
22秒前
23秒前
酷波er应助c123采纳,获得10
23秒前
TIAOTIAO完成签到,获得积分10
25秒前
未晚完成签到 ,获得积分10
25秒前
26秒前
26秒前
天天快乐应助qinglinglie采纳,获得10
26秒前
自由老头应助荒野风采纳,获得10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066