Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion

过程(计算) 路径(计算) 点(几何) 搜索广告 业务 营销
作者
Lizhen Xu,Jason A. Duan,Andrew B. Whinston
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:60 (6): 1392-1412 被引量:107
标识
DOI:10.1287/mnsc.2014.1952
摘要

This paper studies the effects of various types of online advertisements on purchase conversion by capturing the dynamic interactions among advertisement clicks themselves. It is motivated by the observation that certain advertisement clicks may not result in immediate purchases, but they stimulate subsequent clicks on other advertisements, which then lead to purchases. We develop a novel model based on mutually exciting point processes, which consider advertisement clicks and purchases as dependent random events in continuous time. We incorporate individual random effects to account for consumer heterogeneity and cast the model in the Bayesian hierarchical framework. We construct conversion probability to properly evaluate the conversion effects of online advertisements. We develop simulation algorithms for mutually exciting point processes to compute the conversion probability and for out-of-sample prediction. Model comparison results show the proposed model outperforms the benchmark models that ignore exciting effects among advertisement clicks. Using a proprietary data set, we find that display advertisements have relatively low direct effect on purchase conversion, but they are more likely to stimulate subsequent visits through other advertisement formats. We show that the commonly used measure of conversion rate is biased in favor of search advertisements and underestimates the conversion effect of display advertisements the most. Our model also furnishes a useful tool to predict future purchases and advertisement clicks for the purpose of targeted marketing and customer relationship management. This paper was accepted by Eric Bradlow, special issue on business analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助甜蜜的翠柏采纳,获得30
1秒前
轻松凡英完成签到,获得积分10
1秒前
jonghuang发布了新的文献求助10
2秒前
所所应助777采纳,获得10
2秒前
2秒前
asdfj发布了新的文献求助10
2秒前
隐形曼青应助66采纳,获得10
3秒前
叶枫寒发布了新的文献求助10
4秒前
5秒前
6秒前
无所不能的虫虫完成签到,获得积分10
6秒前
顾矜应助柚子加冰采纳,获得10
6秒前
7秒前
科研通AI2S应助太渊采纳,获得10
9秒前
英姑应助flb123采纳,获得10
10秒前
10秒前
10秒前
夏姬宁静发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
子车茗应助科研通管家采纳,获得10
16秒前
水牛应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
sdhgd应助科研通管家采纳,获得10
16秒前
故事止于冬至完成签到,获得积分10
18秒前
飞跃完成签到 ,获得积分10
18秒前
茜文完成签到,获得积分10
18秒前
19秒前
@@发布了新的文献求助10
21秒前
凌惠娟完成签到,获得积分10
22秒前
Surge发布了新的文献求助10
23秒前
许半仙发布了新的文献求助10
25秒前
26秒前
27秒前
叶枫寒关注了科研通微信公众号
27秒前
直率的惜寒完成签到,获得积分10
28秒前
28秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919