Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion

过程(计算) 路径(计算) 点(几何) 搜索广告 业务 营销
作者
Lizhen Xu,Jason A. Duan,Andrew B. Whinston
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:60 (6): 1392-1412 被引量:107
标识
DOI:10.1287/mnsc.2014.1952
摘要

This paper studies the effects of various types of online advertisements on purchase conversion by capturing the dynamic interactions among advertisement clicks themselves. It is motivated by the observation that certain advertisement clicks may not result in immediate purchases, but they stimulate subsequent clicks on other advertisements, which then lead to purchases. We develop a novel model based on mutually exciting point processes, which consider advertisement clicks and purchases as dependent random events in continuous time. We incorporate individual random effects to account for consumer heterogeneity and cast the model in the Bayesian hierarchical framework. We construct conversion probability to properly evaluate the conversion effects of online advertisements. We develop simulation algorithms for mutually exciting point processes to compute the conversion probability and for out-of-sample prediction. Model comparison results show the proposed model outperforms the benchmark models that ignore exciting effects among advertisement clicks. Using a proprietary data set, we find that display advertisements have relatively low direct effect on purchase conversion, but they are more likely to stimulate subsequent visits through other advertisement formats. We show that the commonly used measure of conversion rate is biased in favor of search advertisements and underestimates the conversion effect of display advertisements the most. Our model also furnishes a useful tool to predict future purchases and advertisement clicks for the purpose of targeted marketing and customer relationship management. This paper was accepted by Eric Bradlow, special issue on business analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzzzzzj发布了新的文献求助10
刚刚
刚刚
1秒前
lxk55555发布了新的文献求助10
2秒前
zxy完成签到 ,获得积分10
2秒前
小叶曲完成签到,获得积分10
2秒前
大模型应助小冯看不懂采纳,获得10
2秒前
闲登小阁读新晴完成签到,获得积分10
2秒前
松子完成签到,获得积分10
3秒前
聆风发布了新的文献求助10
3秒前
英俊延恶发布了新的文献求助10
3秒前
yyds完成签到,获得积分0
3秒前
4秒前
xin发布了新的文献求助10
4秒前
HX发布了新的文献求助10
5秒前
小孙完成签到,获得积分10
6秒前
qinglongtsmc发布了新的文献求助10
6秒前
无风海发布了新的文献求助10
6秒前
飞鸟完成签到,获得积分10
6秒前
6秒前
lmy完成签到,获得积分20
6秒前
7秒前
天天快乐应助科研小趴菜采纳,获得10
8秒前
啵啵完成签到,获得积分10
8秒前
丘比特应助allton采纳,获得10
9秒前
车谷子完成签到,获得积分10
9秒前
10秒前
10秒前
聆风完成签到,获得积分10
10秒前
Yaaaaaa发布了新的文献求助10
10秒前
淡淡向卉完成签到,获得积分10
10秒前
11秒前
搜集达人应助苹果秋灵采纳,获得10
11秒前
北秋完成签到,获得积分20
11秒前
yooloo发布了新的文献求助10
11秒前
zzzzzzzzzj完成签到,获得积分10
11秒前
水门完成签到,获得积分10
13秒前
碗碗完成签到,获得积分10
14秒前
打打应助无风海采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186