微塑料
吸附
吸附
环境化学
天然有机质
化学
污染
环境科学
有机质
化学工程
有机化学
生态学
生物
工程类
作者
Mohamed Ateia,Ting Zheng,Stefania Calace,Nishanth Tharayil,Srikanth Pilla,Tanju Karanfil
标识
DOI:10.1016/j.scitotenv.2020.137634
摘要
Microplastics (MPs) have been recognized as transport vectors for micropollutants in the natural water environment and the food web; therefore, the sorption behavior of contaminant on MPs has recently gained an increased attention. However, a consensus has not yet been reached and information about the adsorption of water contaminants on real MPs remains elusive. Herein, we raise the question of "Should we continue using pure polymers as surrogates for real MPs?" This first systematic study compared the adsorption of multiple micropollutants (i.e. a pesticide, a pharmaceutical, and perfluoroalkyl substances (PFAS)) on a large set of MPs (i.e. 20 well-characterized MPs) and kaolin. Material characterizations results showed various physicochemical and compositional differences between real and pure MPs. Pure polymers had lower normalized uptake values than real MPs in most cases. This was attributed to the surface roughness and/or the presence of fillers (e.g. talc and glass fiber) in real samples. Further, preloaded MPs with natural organic matter (NOM) showed an increased uptake of micropollutants due to forming a complex with NOM and/or co-sorption. These findings indicate that employing real MPs in research studies is critical for obtaining environmentally meaningful results, and the evaluation of MPs sorption behavior without NOM preloading can result in a significant underestimation for their actual values. We also provided an outlook the key areas for further investigations.
科研通智能强力驱动
Strongly Powered by AbleSci AI