亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Innovative Formulation Tightening Approach for Job-Shop Scheduling

整数规划 凸壳 数学优化 线性规划 二进制数 调度(生产过程) 预处理器 作业车间调度 整数(计算机科学) 计算机科学 数学 正多边形 人工智能 地铁列车时刻表 操作系统 算术 程序设计语言 几何学
作者
Bing Yan,Mikhail A. Bragin,Peter B. Luh
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2526-2539 被引量:2
标识
DOI:10.1109/tase.2021.3088047
摘要

Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently been formulated as an integer linear programming (ILP) problem to take advantages of popular mixed-integer linear programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may experience difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data preprocessing stage, then a solution can be obtained by using linear programming (LP) methods without combinatorial difficulties. The tightening process, however, is fundamentally challenging because of the existence of integer variables. In this article, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data preprocessing stage. It is a major advancement of our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by the binary variables. With binary and continuous variables only, it is proved that the vertices of the convex hull can be obtained based on vertices of the LP problem after relaxing binary requirements. These vertices are then converted to tightened constraints for general use. This approach significantly improves our previous results on tightening individual operations. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other complex ILP and MILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved. Note to Practitioners —Scheduling is an important but difficult problem in planning and operation of job shops. The problem has been recently formulated in an integer linear programming (ILP) form to take advantage of popular mixed-integer linear programming methods. Given an ILP problem, there must exist a linear programming (LP) formulation so that all of its vertices are also the vertices to the ILP problem. If such an LP problem can be found in the data preprocessing stage, then the corresponding ILP problem is tight and can be solved by using an LP method without difficulties. In this article, an innovative and systematic approach is established to tighten the formulations of individual parts, each with one or multiple operations. It is a major advancement of our previous work on problems with binary and continuous variables by novel exploitation of the relationship between integer and binary variables in job-shop scheduling. The resulting tightened constraints are characterized by part parameters and the length of the scheduling horizon and can be easily adjusted for other data sets. Results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other complex ILP and MILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Schroenius完成签到,获得积分10
11秒前
joanna完成签到,获得积分10
22秒前
26秒前
28秒前
32秒前
32秒前
Wri完成签到,获得积分10
37秒前
yao完成签到,获得积分10
38秒前
Wri发布了新的文献求助10
39秒前
腰突患者的科研完成签到,获得积分10
43秒前
58秒前
鳗鱼厉发布了新的文献求助10
59秒前
1分钟前
1分钟前
TXZ06完成签到,获得积分10
1分钟前
pan发布了新的文献求助10
1分钟前
1分钟前
科目三应助平常远山采纳,获得10
2分钟前
自信迎天发布了新的文献求助10
2分钟前
Eva发布了新的文献求助10
2分钟前
划落落完成签到 ,获得积分10
2分钟前
王乐多完成签到,获得积分10
3分钟前
斯文败类应助自信迎天采纳,获得20
3分钟前
3分钟前
Owen应助你求我一下采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
3分钟前
zqq完成签到,获得积分0
4分钟前
垚祎完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Zcccjy完成签到 ,获得积分10
5分钟前
5分钟前
小迪完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
平常远山发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054368
关于积分的说明 9041835
捐赠科研通 2743703
什么是DOI,文献DOI怎么找? 1505155
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864