A Novel 3D LiDAR SLAM Based on Directed Geometry Point and Sparse Frame

计算机科学 点云 人工智能 计算机视觉 激光雷达 同时定位和映射 算法 点(几何) 三维重建 三角测量
作者
Shuang Liang,Zhiqiang Cao,Chengpeng Wang,Junzhi Yu
出处
期刊:IEEE robotics & automation letters [Institute of Electrical and Electronics Engineers]
卷期号:6 (2): 374-381 被引量:2
标识
DOI:10.1109/lra.2020.3043200
摘要

Simultaneous localization and mapping is an indispensable yet challenging direction for mobile robots. Attracted by 3D LiDAR with accurate depth information and robustness to illumination variations, many 3D LiDAR SLAM methods based on scan-to-map matching have been developed. However, there is a critical issue of existing approaches, where a large and dense map is generally required to achieve satisfactory localization accuracy, leading to low efficiency of scan-to-map matching. To solve this problem, in this letter, we propose a novel 3D LiDAR SLAM based on directed geometry point (DGP) and sparse frame. The former is used to provide a sparse distribution of points in the spatial dimension and the latter gives rise to a sparse distribution of frames in the temporal sequence. The sparsity of points and frames impove the efficiency of 3D LiDAR SLAM, and the strict data association based on directed geometric points also brings in good accuracy of pose estimation. To compensate the accuracy loss of the localization and mapping caused by frame sparsity, point propagation is proposed to improve the quality of directed geometric points in the map and the accuracy of scan-to-map matching. Also, loop detection and pose graph optimization are conducted for global consistency. The experimental results demonstrate the effectiveness of the proposed method in terms of accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助feihu采纳,获得10
1秒前
2秒前
4秒前
善学以致用应助JUNJIU采纳,获得20
5秒前
7秒前
7秒前
7秒前
kirirto发布了新的文献求助10
8秒前
8秒前
开朗的寄灵完成签到,获得积分10
8秒前
登登完成签到,获得积分10
9秒前
9秒前
shinysparrow完成签到,获得积分0
10秒前
李达也发布了新的文献求助10
11秒前
asdf应助kakafan采纳,获得10
11秒前
yi完成签到,获得积分10
12秒前
feihu发布了新的文献求助10
12秒前
迷路筝发布了新的文献求助10
13秒前
酷酷的冰真应助character577采纳,获得30
13秒前
NexusExplorer应助王姗and帅白采纳,获得10
14秒前
18秒前
沉迷学习给沉迷学习的求助进行了留言
19秒前
19秒前
21秒前
DrD发布了新的文献求助10
24秒前
华仔应助迷路筝采纳,获得10
24秒前
666应助ljh采纳,获得10
25秒前
牛牛眉目发布了新的文献求助10
27秒前
27秒前
Ava应助关山月采纳,获得10
28秒前
一直发布了新的文献求助10
29秒前
登登发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
33秒前
爆米花应助华青ww采纳,获得10
33秒前
33秒前
34秒前
SKSK完成签到 ,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361