Use of Artificial Intelligence Deep Learning to Determine the Malignant Potential of Pancreatic Cystic Neoplasms With Preoperative Computed Tomography Imaging

恶性肿瘤 医学 深度学习 放射科 导管内乳头状粘液性肿瘤 发育不良 人工智能 胰腺 病理 内科学 计算机科学
作者
Michael Watson,William B. Lyman,Michael Passeri,Keith J. Murphy,John P. Sarantou,David A. Iannitti,John B. Martinie,Dionisios Vrochides,E. Baker
出处
期刊:American Surgeon [SAGE Publishing]
卷期号:87 (4): 602-607 被引量:17
标识
DOI:10.1177/0003134820953779
摘要

Background Society consensus guidelines are commonly used to guide management of pancreatic cystic neoplasms (PCNs). However, downsides of these guidelines include unnecessary surgery and missed malignancy. The aim of this study was to use computed tomography (CT)-guided deep learning techniques to predict malignancy of PCNs. Materials and Methods Patients with PCNs who underwent resection were retrospectively reviewed. Axial images of the mucinous cystic neoplasms were collected and based on final pathology were assigned a binary outcome of advanced neoplasia or benign. Advanced neoplasia was defined as adenocarcinoma or intraductal papillary mucinous neoplasm with high-grade dysplasia. A convolutional neural network (CNN) deep learning model was trained on 66% of images, and this trained model was used to test 33% of images. Predictions from the deep learning model were compared to Fukuoka guidelines. Results Twenty-seven patients met the inclusion criteria, with 18 used for training and 9 for model testing. The trained deep learning model correctly predicted 3 of 3 malignant lesions and 5 of 6 benign lesions. Fukuoka guidelines correctly classified 2 of 3 malignant lesions as high risk and 4 of 6 benign lesions as worrisome. Following deep learning model predictions would have avoided 1 missed malignancy and 1 unnecessary operation. Discussion In this pilot study, a deep learning model correctly classified 8 of 9 PCNs and performed better than consensus guidelines. Deep learning can be used to predict malignancy of PCNs; however, further model improvements are necessary before clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就好完成签到 ,获得积分10
2秒前
2秒前
今后应助liuzengzhang666采纳,获得10
2秒前
2秒前
看看不要钱完成签到,获得积分10
3秒前
dqq发布了新的文献求助10
4秒前
5秒前
huang发布了新的文献求助10
5秒前
kaixinjh1234发布了新的文献求助10
5秒前
坚强的寒风完成签到,获得积分10
6秒前
Meddy给Meddy的求助进行了留言
8秒前
9秒前
鲤鱼睿渊发布了新的文献求助10
10秒前
liangguangyuan完成签到 ,获得积分10
12秒前
精明觅山完成签到,获得积分10
13秒前
爆米花应助kaixinjh1234采纳,获得10
13秒前
星辰大海应助r93527005采纳,获得10
14秒前
小卷粉完成签到 ,获得积分10
15秒前
16秒前
小小美少女完成签到 ,获得积分10
17秒前
huang完成签到,获得积分10
19秒前
安静白羊完成签到,获得积分10
21秒前
23秒前
23秒前
胡指导完成签到,获得积分20
25秒前
mm发布了新的文献求助30
28秒前
bkagyin应助dqq采纳,获得10
28秒前
香蕉觅云应助zhen采纳,获得10
28秒前
留胡子的霖完成签到,获得积分10
28秒前
29秒前
英姑应助科研通管家采纳,获得30
31秒前
大模型应助科研通管家采纳,获得10
31秒前
zzzzzzzz应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
31秒前
lo发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
34秒前
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010512
求助须知:如何正确求助?哪些是违规求助? 3550312
关于积分的说明 11305427
捐赠科研通 3284689
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499