电源1
对氧磷酶
髓过氧化物酶
内科学
芳基二烷基磷酸酶
代谢综合征
高密度脂蛋白
失调家庭
脂蛋白
氧化应激
内分泌学
医学
化学
胆固醇
生物化学
炎症
基因
肥胖
基因型
临床心理学
作者
Tiziana Bacchetti,Gianna Ferretti,Federico Carbone,Stefano Ministrini,Fabrizio Montecucco,Tannaz Jamialahmadi,Amirhossein Sahebkar
标识
DOI:10.2174/0929867327999200716112353
摘要
Low circulating high-density lipoproteins (HDL) are not only defining criteria for metabolic syndrome, but are more generally associated with atherosclerotic cardiovascular disease (ASCVD) and other chronic diseases. Oxidative stress, a hallmark of cardio-metabolic disease, further influences HDL activity by suppressing their function. Especially the leukocyte- derived enzyme myeloperoxidase (MPO) has recently attracted great interest as it catalyzes the formation of oxidizing reactive species that modify the structure and function of HDL, ultimately increasing cardiovascular risk. Contrariwise, paraoxonase-1 (PON1) is an HDL-associated enzyme that protects HDL from lipid oxidation and then acts as a protective factor against ASCVD. It is noteworthy that recent studies have demonstrated how MPO, PON1 and HDL form a functional complex in which PON1 partially inhibits the MPO activity, while MPO in turn partially inactivates PON1.In line with that, a high MPO/PON1 ratio characterizes patients with ASCVD and metabolic syndrome and has been suggested as a potential marker of dysfunctional HDL as well as a predictor of ASCVD. In this review, we summarize the evidence on the interactions between MPO and PON1 with regard to their structure, function and interaction with HDL activity. We also provide an overview of in vitro and experimental animal models, finally focusing on clinical evidence from a cohort of patients with ASCVD and metabolic syndrome.
科研通智能强力驱动
Strongly Powered by AbleSci AI