Significance Developing a male-sterility system that is effective in multiple species is essential for hybrid seed production in different plants, especially for plants without cloned male-sterility genes. Here, we identified the transcriptional regulation mechanism for maize male-sterility gene ZmMs7 and thereby developed a dominant male-sterility system that was proved to be effective in maize, rice, and Arabidopsis . Compared with current male-sterility systems, this system has potential advantages, e.g., utilization of a single transgene cassette, high stability of male sterility under different genetic backgrounds, and producing fluorescent transgenic and normal color nontransgenic F 1 hybrid seeds which can be used flexibly in different countries where transgenic crop cultivation is prohibited or allowed. Therefore, it is a simple, cost-effective, and multiple-crop-applicable biotechnology.