Deep Encoder–Decoder Networks for Classification of Hyperspectral and LiDAR Data

激光雷达 计算机科学 高光谱成像 深度学习 人工智能 编码器 测距 模态(人机交互) 传感器融合 特征(语言学) 模式识别(心理学) 特征学习 遥感 电信 操作系统 地质学 哲学 语言学
作者
Danfeng Hong,Lianru Gao,Renlong Hang,Bing Zhang,Jocelyn Chanussot
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:149
标识
DOI:10.1109/lgrs.2020.3017414
摘要

Deep learning (DL) has been garnering increasing attention in remote sensing (RS) due to its powerful data representation ability. In particular, deep models have been proven to be effective for RS data classification based on a single given modality. However, with one single modality, the ability in identifying the materials remains limited due to the lack of feature diversity. To overcome this limitation, we present a simple but effective multimodal DL baseline by following a deep encoder–decoder network architecture, EndNet for short, for the classification of hyperspectral and light detection and ranging (LiDAR) data. EndNet fuses the multimodal information by enforcing the fused features to reconstruct the multimodal input in turn. Such a reconstruction strategy is capable of better activating the neurons across modalities compared with some conventional and widely used fusion strategies, e.g., early fusion, middle fusion, and late fusion. Extensive experiments conducted on two popular hyperspectral and LiDAR data sets demonstrate the superiority and effectiveness of the proposed EndNet in comparison with several state-of-the-art baselines in the hyperspectral-LiDAR classification task. The codes will be available at https://github.com/danfenghong/IEEE_GRSL_EndNet , contributing to the RS community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助freebird采纳,获得30
1秒前
1秒前
1秒前
棉花糖发布了新的文献求助10
3秒前
充电宝应助殷勤的斓采纳,获得10
3秒前
3秒前
纪靖雁发布了新的文献求助10
4秒前
4秒前
4秒前
山山而川发布了新的文献求助10
4秒前
大毛关注了科研通微信公众号
5秒前
6秒前
6秒前
迟大猫应助长安采纳,获得10
6秒前
超文献发布了新的文献求助10
8秒前
changjiaren完成签到,获得积分10
8秒前
eso完成签到,获得积分10
9秒前
沿途南行发布了新的文献求助10
9秒前
10秒前
Psccc发布了新的文献求助10
12秒前
青呀青呀乔完成签到,获得积分10
12秒前
传奇3应助尊敬不斜采纳,获得10
12秒前
向聿发布了新的文献求助10
12秒前
12秒前
上官若男应助cccc采纳,获得10
12秒前
星辰大海应助曦子曦子采纳,获得10
13秒前
13秒前
13秒前
14秒前
fairy完成签到,获得积分10
14秒前
14秒前
殷勤的斓发布了新的文献求助10
16秒前
16秒前
思源应助Luhan采纳,获得10
17秒前
早点发SCI完成签到,获得积分10
17秒前
17秒前
搜集达人应助盛夏采纳,获得10
17秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199