Vehicle Tracking and Speed Estimation From Roadside Lidar

激光雷达 计算机科学 卡尔曼滤波器 车辆跟踪系统 交叉口(航空) 跟踪(教育) 校准 计算机视觉 点云 跟踪系统 遥感 人工智能 工程类 地理 数学 统计 航空航天工程 心理学 教育学
作者
Jiaxing Zhang,Wen Xiao,Benjamin Coifman,J. P. Mills
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 5597-5608 被引量:63
标识
DOI:10.1109/jstars.2020.3024921
摘要

Vehicle speed is a key variable for the calibration, validation, and improvement of traffic emission and air quality models. Lidar technologies have significant potential in vehicle tracking by scanning the surroundings in 3-D frequently, hence can be used as traffic flow monitoring sensors for accurate vehicle counting and speed estimation. However, the characteristics of lidar-based vehicle tracking and speed estimation, such as attainable accuracy, remain as open questions. This research therefore proposes a tracking framework from roadside lidar to detect and track vehicles with the aim of accurate vehicle speed estimation. Within this framework, on-road vehicles are first detected from the observed point clouds, after which a centroid-based tracking flow is implemented to obtain initial vehicle transformations. A tracker, utilizing the unscented Kalman Filter and joint probabilistic data association filter, is adopted in the tracking flow. Finally, vehicle tracking is refined through an image matching process to improve the accuracy of estimated vehicle speeds. The effectiveness of the proposed approach has been evaluated using lidar data obtained from two different panoramic 3-D lidar sensors, a RoboSense RS-LiDAR-32 and a Velodyne VLP-16, at a traffic light and a road intersection, respectively, in order to account for real-world scenarios. Validation against reference data obtained by a test vehicle equipped with accurate positioning systems shows that more than 94% of vehicles could be detected and tracked, with a mean speed accuracy of 0.22 m/s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狗子完成签到 ,获得积分10
刚刚
CodeCraft应助小小飞采纳,获得10
刚刚
JamesPei应助JUSTs0so采纳,获得10
2秒前
Beth完成签到,获得积分10
2秒前
粥粥发布了新的文献求助10
3秒前
3秒前
庞威完成签到 ,获得积分10
3秒前
4秒前
吕春雨完成签到,获得积分10
4秒前
Grayball应助ccc采纳,获得10
4秒前
5秒前
5秒前
勖勖完成签到,获得积分10
5秒前
邵裘发布了新的文献求助10
5秒前
5秒前
饕餮完成签到,获得积分10
6秒前
7秒前
wangg发布了新的文献求助10
7秒前
大个应助勤恳的依丝采纳,获得10
8秒前
星星发布了新的文献求助10
8秒前
spray发布了新的文献求助30
8秒前
LZJ完成签到,获得积分10
8秒前
9秒前
YE发布了新的文献求助30
9秒前
MHB应助叫滚滚采纳,获得10
10秒前
wzxxxx发布了新的文献求助10
10秒前
斯文败类应助勤劳傲晴采纳,获得10
11秒前
shilong.yang发布了新的文献求助10
11秒前
momo完成签到,获得积分10
12秒前
wxp_bioinfo完成签到,获得积分10
13秒前
13秒前
桐桐应助wangg采纳,获得10
13秒前
Jun完成签到,获得积分10
14秒前
芝士的酒发布了新的文献求助50
14秒前
15秒前
赘婿应助复杂的问玉采纳,获得30
15秒前
16秒前
16秒前
17秒前
端庄白开水完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808