Vehicle Tracking and Speed Estimation From Roadside Lidar

激光雷达 计算机科学 卡尔曼滤波器 车辆跟踪系统 交叉口(航空) 跟踪(教育) 校准 计算机视觉 点云 跟踪系统 遥感 人工智能 工程类 地理 数学 统计 航空航天工程 心理学 教育学
作者
Jiaxing Zhang,Wen Xiao,Benjamin Coifman,J. P. Mills
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 5597-5608 被引量:63
标识
DOI:10.1109/jstars.2020.3024921
摘要

Vehicle speed is a key variable for the calibration, validation, and improvement of traffic emission and air quality models. Lidar technologies have significant potential in vehicle tracking by scanning the surroundings in 3-D frequently, hence can be used as traffic flow monitoring sensors for accurate vehicle counting and speed estimation. However, the characteristics of lidar-based vehicle tracking and speed estimation, such as attainable accuracy, remain as open questions. This research therefore proposes a tracking framework from roadside lidar to detect and track vehicles with the aim of accurate vehicle speed estimation. Within this framework, on-road vehicles are first detected from the observed point clouds, after which a centroid-based tracking flow is implemented to obtain initial vehicle transformations. A tracker, utilizing the unscented Kalman Filter and joint probabilistic data association filter, is adopted in the tracking flow. Finally, vehicle tracking is refined through an image matching process to improve the accuracy of estimated vehicle speeds. The effectiveness of the proposed approach has been evaluated using lidar data obtained from two different panoramic 3-D lidar sensors, a RoboSense RS-LiDAR-32 and a Velodyne VLP-16, at a traffic light and a road intersection, respectively, in order to account for real-world scenarios. Validation against reference data obtained by a test vehicle equipped with accurate positioning systems shows that more than 94% of vehicles could be detected and tracked, with a mean speed accuracy of 0.22 m/s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助斯文的寒凝采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
懒骨头兄应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
EROS完成签到,获得积分10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
zzz完成签到,获得积分10
刚刚
田様应助科研通管家采纳,获得10
刚刚
顾瑶发布了新的文献求助10
刚刚
小鹿发布了新的文献求助10
刚刚
只争朝夕应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
半农应助科研通管家采纳,获得30
1秒前
懒骨头兄应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
00完成签到,获得积分10
1秒前
优美的冰巧完成签到 ,获得积分10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320