Machine Learning Based Workload Prediction in Cloud Computing

计算机科学 云计算 工作量 供应 聚类分析 调度(生产过程) 分布式计算 服务质量 虚拟机 实时计算 数据挖掘 机器学习 计算机网络 操作系统 运营管理 经济
作者
Jiechao Gao,Haoyu Wang,Haiying Shen
出处
期刊:International Conference on Computer Communications and Networks 被引量:143
标识
DOI:10.1109/icccn49398.2020.9209730
摘要

As a widely used IT service, more and more companies shift their services to cloud datacenters. It is important for cloud service providers (CSPs) to provide cloud service resources with high elasticity and cost-effectiveness and then achieve good quality of service (QoS) for their clients. However, meeting QoS with cost-effective resource is a challenging problem for CSPs because the workloads of Virtual Machines (VMs) experience variation over time. It is highly necessary to provide an accurate VMs workload prediction method for resource provisioning to efficiently manage cloud resources. In this paper, we first compare the performance of representative state-of-the-art workload prediction methods. We suggest a method to conduct the prediction a certain time before the predicted time point in order to allow sufficient time for task scheduling based on predicted workload. To further improve the prediction accuracy, we introduce a clustering based workload prediction method, which first clusters all the tasks into several categories and then trains a prediction model for each category respectively. The trace-driven experiments based on Google cluster trace demonstrates that our clustering based workload prediction methods outperform other comparison methods and improve the prediction accuracy to around 90% both in CPU and memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助及禾采纳,获得10
1秒前
2秒前
3秒前
4秒前
那时花开发布了新的文献求助10
4秒前
5秒前
7秒前
艾斯完成签到 ,获得积分10
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助150
9秒前
Xiaoxiao应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小青椒应助科研通管家采纳,获得20
9秒前
9秒前
带头大哥应助科研通管家采纳,获得150
9秒前
9秒前
9秒前
9秒前
王来敏发布了新的文献求助10
10秒前
英俊的铭应助周周采纳,获得10
12秒前
healer发布了新的文献求助10
13秒前
zytccab发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
小二郎应助李家静采纳,获得10
16秒前
冉冉完成签到,获得积分20
16秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144545
求助须知:如何正确求助?哪些是违规求助? 4342237
关于积分的说明 13522560
捐赠科研通 4182757
什么是DOI,文献DOI怎么找? 2293639
邀请新用户注册赠送积分活动 1294207
关于科研通互助平台的介绍 1236955