Machine Learning Based Workload Prediction in Cloud Computing

计算机科学 云计算 工作量 供应 聚类分析 调度(生产过程) 分布式计算 服务质量 虚拟机 实时计算 数据挖掘 机器学习 计算机网络 操作系统 运营管理 经济
作者
Jiechao Gao,Haoyu Wang,Haiying Shen
出处
期刊:International Conference on Computer Communications and Networks 被引量:143
标识
DOI:10.1109/icccn49398.2020.9209730
摘要

As a widely used IT service, more and more companies shift their services to cloud datacenters. It is important for cloud service providers (CSPs) to provide cloud service resources with high elasticity and cost-effectiveness and then achieve good quality of service (QoS) for their clients. However, meeting QoS with cost-effective resource is a challenging problem for CSPs because the workloads of Virtual Machines (VMs) experience variation over time. It is highly necessary to provide an accurate VMs workload prediction method for resource provisioning to efficiently manage cloud resources. In this paper, we first compare the performance of representative state-of-the-art workload prediction methods. We suggest a method to conduct the prediction a certain time before the predicted time point in order to allow sufficient time for task scheduling based on predicted workload. To further improve the prediction accuracy, we introduce a clustering based workload prediction method, which first clusters all the tasks into several categories and then trains a prediction model for each category respectively. The trace-driven experiments based on Google cluster trace demonstrates that our clustering based workload prediction methods outperform other comparison methods and improve the prediction accuracy to around 90% both in CPU and memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研小白董采纳,获得30
2秒前
4秒前
gkhsdvkb完成签到 ,获得积分10
4秒前
6秒前
猕猴桃发布了新的文献求助10
7秒前
9秒前
科研通AI2S应助lane采纳,获得10
9秒前
思源应助jiujiuhuang采纳,获得10
9秒前
胡乱说兔的熊完成签到,获得积分10
9秒前
10秒前
薇薇完成签到,获得积分10
10秒前
李健应助大胖采纳,获得10
11秒前
13秒前
13秒前
风趣绮烟完成签到,获得积分10
14秒前
14秒前
lance发布了新的文献求助10
15秒前
16秒前
nil完成签到,获得积分10
17秒前
汉堡包应助flysky120采纳,获得30
18秒前
菠萝菠萝哒给嘒彼小星的求助进行了留言
18秒前
blind发布了新的文献求助10
18秒前
lmy发布了新的文献求助50
19秒前
19秒前
20秒前
jiujiuhuang发布了新的文献求助10
20秒前
lance完成签到,获得积分10
21秒前
打打应助发嗲的怜珊采纳,获得10
21秒前
科研通AI2S应助lane采纳,获得10
22秒前
22秒前
共享精神应助黄婷采纳,获得10
24秒前
研友_Z6WNm8完成签到,获得积分10
24秒前
CipherSage应助戴岱采纳,获得10
25秒前
26秒前
blind完成签到,获得积分10
31秒前
32秒前
Johann完成签到,获得积分10
33秒前
Ma完成签到 ,获得积分10
34秒前
34秒前
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313996
求助须知:如何正确求助?哪些是违规求助? 2946386
关于积分的说明 8529843
捐赠科研通 2622024
什么是DOI,文献DOI怎么找? 1434296
科研通“疑难数据库(出版商)”最低求助积分说明 665201
邀请新用户注册赠送积分活动 650792