作者
Dale E. Fournier,Patti Kiser,J. Kevin Shoemaker,Michele C. Battié,Cheryle A. Séguin
摘要
Abstract Intervertebral discs (IVDs) are often referred to as the largest avascular structures of the human body, yet a collective resource characterizing the vascularization of the IVD does not exist. To address this gap, the objective of this study was to conduct a comprehensive search of the literature to review and summarize current knowledge of the prevalence and localization of blood supply in human IVDs, with a scoping review. A comprehensive search of peer‐reviewed publications on the topic of IVD vascularization in humans was conducted across six electronic databases: PubMed, EMBASE, MEDLINE, Scopus, Web of Science, and BIOSIS Previews. Studies of humans were included regardless of age, sex, ethnicity, and health status, with the exception of IVD herniation. Two independent reviewers screened titles and abstracts and full‐texts according to eligibility criteria. The review was conducted and reported according to Preferred Reporting Items for Systematic Reviews Extension for Scoping Reviews guidelines. Our search yielded 3122 articles, with 22 articles meeting the inclusion criteria. The study samples ranged in age from fetal to >90 years and included both sexes, various health statuses, and used different methodologies (eg, histology, medical imaging, and gross dissection) to assess vasculature. Overall, consistent observations were that (a) the nucleus pulposus of the IVD is avascular throughout life, (b) both the cartilage endplates and annulus fibrosus receive considerable blood supply early in life that diminishes over the lifespan, and (c) vascular ingrowth into the cartilage endplates and inner layers of the annulus fibrosus is commonly associated with damaged or disrupted tissue, irrespective of age. Histology and immunohistochemistry are often used to report vascularization of the IVD. The body of the current literature suggests that the IVD should not be generalized as an avascular tissue. Instead, vascularization of the IVD differs based on the constituent tissues, their age, and state of degeneration or damage.