亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simultaneous construction of dual-site phosphorus modified g-C3N4 and its synergistic mechanism for enhanced visible-light photocatalytic hydrogen evolution

光催化 石墨氮化碳 材料科学 兴奋剂 光化学 电子能带结构 载流子 化学工程 纳米技术 化学 催化作用 光电子学 有机化学 物理 量子力学 工程类 冶金
作者
Yingjie Sun,Jiang-yan He,Dou Zhang,Xiaojing Wang,Jun Zhao,Rui‐hong Liu,Fa‐tang Li
出处
期刊:Applied Surface Science [Elsevier]
卷期号:517: 146192-146192 被引量:32
标识
DOI:10.1016/j.apsusc.2020.146192
摘要

Band structure regulation and the improvement of the carrier separation efficiency represent two important factors in relation to photocatalytic activity. Thus, the simultaneous construction of the structure and the surface of a photocatalyst would serve to address both issues. In light of the special redox property of ammonium hypophosphite, dual-site phosphorus-modified graphitic carbon nitride (g-C3N4) photocatalysts were designed in the present study. In contrast to pristine g-C3N4 and to traditional single-site phosphorus doping, the dual-site phosphorus-modified g-C3N4 showed an apparent increase in photocatalytic H2 evolution. The characterization results showed that the P modification existed in two forms, namely substitution of P atoms for C atoms and the surface PN bond. In-depth analyses of the structure–activity relationship suggested that dual-site doping can regulate the band structure of g-C3N4, promote the charge-transfer rate, and further, improve the separation efficiency of photogenerated carriers. The findings of this study could provide new insights concerning the design of dual-site phosphorus-modified photocatalysts with a regulated band structure and surface state, which could represent a promising strategy for use in the field of solar energy conversion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
哈哈完成签到 ,获得积分10
6秒前
9秒前
11秒前
帝国之花应助科研通管家采纳,获得10
18秒前
18秒前
orixero应助科研通管家采纳,获得10
18秒前
19秒前
xxxgggppp发布了新的文献求助10
26秒前
28秒前
xx发布了新的文献求助10
34秒前
42秒前
YuxinChen完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
48秒前
ayun关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
ayun发布了新的文献求助10
1分钟前
1分钟前
1分钟前
SSY发布了新的文献求助10
1分钟前
tianya完成签到,获得积分10
1分钟前
852应助明亮剑采纳,获得10
1分钟前
忆修发布了新的文献求助10
1分钟前
闪闪的晓丝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
齐家腾发布了新的文献求助30
2分钟前
susu发布了新的文献求助10
2分钟前
烂漫笑晴完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
帝国之花应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
小泉完成签到 ,获得积分10
2分钟前
诉与山风听完成签到,获得积分10
2分钟前
Willow完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772668
求助须知:如何正确求助?哪些是违规求助? 5600854
关于积分的说明 15429906
捐赠科研通 4905576
什么是DOI,文献DOI怎么找? 2639501
邀请新用户注册赠送积分活动 1587404
关于科研通互助平台的介绍 1542329