自愈水凝胶
吸附
化学工程
傅里叶变换红外光谱
水溶液中的金属离子
X射线光电子能谱
壳聚糖
聚合物
化学
材料科学
金属
高分子化学
有机化学
工程类
作者
Shuxian Tang,Jueying Yang,Lizhi Lin,Kelin Peng,Yu Chen,Shaohua Jin,Weishang Yao
标识
DOI:10.1016/j.cej.2020.124728
摘要
Chemical hydrogels have been extensively applied to the removal of heavy metal pollutants. However, most of chemical hydrogels inevitably contain toxic chemical crosslinker residues, which impose serious threats on the environment. Herein, a novel eco-friendly physically-crosslinked double-network hydrogel of chitosan/sodium alginate/calcium ion (CTS/SA/Ca2+ PCDNH) was prepared by the combination of the semi-dissolution acidification sol–gel transition method with the internal gelation method. The PCDNH is formed via the physical crosslinking of sustainable biopolymers, which avoids the excessive use of toxic chemical reagents. In addition, the PCDNH exhibits significantly better mechanical properties than the single-network physical hydrogel crosslinked via electrostatic interactions, which overcomes the weak mechanical properties of physical hydrogels. The formation mechanism and structure of the hydrogel were determined by Fourier-transform infrared spectroscopy (FTIR), 13C solid state nuclear magnetic resonance spectroscopy (13C-SSNMR) and scanning electron microscopy (SEM). The heavy metal ions adsorption mechanism was explored by X-ray photoelectron spectroscopy (XPS) analysis. The adsorption kinetics, isotherms and thermodynamics were further studied to understand the adsorption mechanism. Our work has provided a new method for the fabrication of natural polymers-based eco-friendly, low-cost and robust physical hydrogels for the heavy metal ions removal.
科研通智能强力驱动
Strongly Powered by AbleSci AI