光热治疗
免疫疗法
癌症
光动力疗法
癌症免疫疗法
材料科学
癌症研究
纳米技术
化学
医学
内科学
有机化学
作者
Xiuxiu Yao,Baochan Yang,Shan Wang,Zhichao Dai,Dongsheng Zhang,Xiuwen Zheng,Qingyun Liu
摘要
A new multi-modal therapy agent, FePt/BP–PEI–FA nanoplatform, with FePt nanoparticles (FePt NPs) loaded onto ultrathin black phosphorus nanosheets (BPNs), has been constructed to enhance synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemodynamic therapy (CDT) that target primary tumors. In this work, BPNs exhibit excellent photothermal and photodynamic behaviors under different wavelength laser irradiation. After polyethylenimine (PEI) modification, FePt NPs with sizes of 3–4 nm are uniformly attached onto the surface of modified BPNs via electrostatic adsorption. FePt NPs, as a ferroptosis agent, can transform endogenous H2O2 into reactive oxygen species (ROS) through the Fenton reaction, ultimately inducing cell death. Based on magnetic resonance imaging (MR) and thermal imaging, the as-prepared FePt/BP–PEI–FA NCs can inhibit tumor growth by achieving synergistic therapies. More significantly, combined with cytotoxic T lymphocyte-associated protein 4 (CTLA-4) checkpoint blockade, FePt/BP–PEI–FA NC-induced PTT can control both primary and untreated distant tumors' growth. Therefore, FePt/BP–PEI–FA NCs is a potential multifunctional nanoagent for effective anti-tumor applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI