Predictive coding in balanced neural networks with noise, chaos and delays

计算机科学 编码 突触重量 忠诚 人工神经网络 编码(社会科学) 神经编码 稳健性(进化) 人工智能 数学 电信 生物 生物化学 基因 统计
作者
Jonathan Kadmon,Jonathan Timcheck,Surya Ganguli
出处
期刊:Cornell University - arXiv
摘要

Biological neural networks face a formidable task: performing reliable computations in the face of intrinsic stochasticity in individual neurons, imprecisely specified synaptic connectivity, and nonnegligible delays in synaptic transmission. A common approach to combatting such biological heterogeneity involves averaging over large redundant networks of $N$ neurons resulting in coding errors that decrease classically as $1/\sqrt{N}$. Recent work demonstrated a novel mechanism whereby recurrent spiking networks could efficiently encode dynamic stimuli, achieving a superclassical scaling in which coding errors decrease as $1/N$. This specific mechanism involved two key ideas: predictive coding, and a tight balance, or cancellation between strong feedforward inputs and strong recurrent feedback. However, the theoretical principles governing the efficacy of balanced predictive coding and its robustness to noise, synaptic weight heterogeneity and communication delays remain poorly understood. To discover such principles, we introduce an analytically tractable model of balanced predictive coding, in which the degree of balance and the degree of weight disorder can be dissociated unlike in previous balanced network models, and we develop a mean field theory of coding accuracy. Overall, our work provides and solves a general theoretical framework for dissecting the differential contributions neural noise, synaptic disorder, chaos, synaptic delays, and balance to the fidelity of predictive neural codes, reveals the fundamental role that balance plays in achieving superclassical scaling, and unifies previously disparate models in theoretical neuroscience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助专注乌冬面采纳,获得10
2秒前
2秒前
云氲完成签到 ,获得积分10
2秒前
tangz完成签到,获得积分20
3秒前
3秒前
4秒前
含蓄元冬发布了新的文献求助10
4秒前
4秒前
iNk应助秀丽笑容采纳,获得20
6秒前
keeno完成签到,获得积分10
7秒前
所所应助ccc采纳,获得10
7秒前
Jeriu发布了新的文献求助10
8秒前
小蘑菇应助tangz采纳,获得10
8秒前
香蕉觅云应助夜雨听风眠z采纳,获得10
9秒前
11秒前
安详凡发布了新的文献求助10
13秒前
Jeriu完成签到,获得积分10
13秒前
wudi19887发布了新的文献求助10
17秒前
17秒前
ED应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
只A不B应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
华仔应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得30
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388