Superpixel-based time-series reconstruction for optical images incorporating SAR data using autoencoder networks

自编码 计算机科学 人工智能 转化(遗传学) 影子(心理学) 系列(地层学) 云计算 时间序列 模式识别(心理学) 合成孔径雷达 计算机视觉 遥感 人工神经网络 地理 地质学 操作系统 机器学习 基因 古生物学 生物化学 化学 心理学 心理治疗师
作者
Yanan Zhou,Xianzeng Yang,Li Feng,Wei Wu,Tianjun Wu,Jiancheng Luo,Xiaocheng Zhou,Xin Zhang
出处
期刊:Giscience & Remote Sensing [Taylor & Francis]
卷期号:57 (8): 1005-1025 被引量:8
标识
DOI:10.1080/15481603.2020.1841459
摘要

Time-series reconstruction for cloud/shadow-covered optical satellite images has great significance for enhancing the data availability and temporal change analysis. In this study, we proposed a superpixel-based prediction transformation-fusion (SPTF) time-series reconstruction method for cloud/shadow-covered optical images. Central to this approach is the incorporation between intrinsic tendency from multi-temporal optical images and sequential transformation information from synthetic aperture radar (SAR) data, through autoencoder networks (AE). First, a modified superpixel algorithm was applied on multi-temporal optical images with their manually delineated cloud/shadow masks to generate superpixels. Second, multi-temporal optical images and SAR data were overlaid onto superpixels to produce superpixel-wise time-series curves with missing values. Third, these superpixel-wise time series were clustered by an AE-LSTM (long short-term memory) unsupervised method into multiple clusters (searching similar superpixels). Four, for each superpixel-wise cluster, a prediction-transformation-based reconstruction model was established to restore missing values in optical time series. Finally, reconstructed data were merged with cloud-free regions to produce cloud-free time-series images. The proposed method was verified on two datasets of multi-temporal cloud/shadow-covered Landsat OLI images and Sentinel-1A SAR data. The reconstruction results, showing an improvement of greater than 20% in normalized mean square error compared to three state-of-the-art methods (including a spatially and temporally weighted regression method, a spectral–temporal patch-based method, and a patch-based contextualized AE method), demonstrated the effectiveness of the proposed method in time-series reconstruction for multi-temporal optical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qweerrtt完成签到,获得积分10
刚刚
脸就是黑啊完成签到,获得积分10
1秒前
铭名洺完成签到,获得积分10
1秒前
2秒前
Cactus应助研友_Ze2vV8采纳,获得20
2秒前
2秒前
jilly完成签到,获得积分20
3秒前
3秒前
3秒前
李健应助稳重的悟空采纳,获得10
4秒前
JoanJin发布了新的文献求助10
5秒前
thl发布了新的文献求助10
5秒前
希望天下0贩的0应助Anthone采纳,获得10
6秒前
6秒前
CodeCraft应助Tina泽采纳,获得10
7秒前
烤番薯发布了新的文献求助10
8秒前
8秒前
www完成签到,获得积分10
9秒前
10秒前
Cactus应助研友_Ze2vV8采纳,获得20
12秒前
小白完成签到,获得积分10
12秒前
林祥胜完成签到,获得积分20
12秒前
AAA发布了新的文献求助30
13秒前
SciGPT应助zjq采纳,获得10
13秒前
Llt完成签到,获得积分10
13秒前
Ava应助鱼跃采纳,获得10
14秒前
15秒前
所所应助XIA采纳,获得10
15秒前
15秒前
zou发布了新的文献求助10
16秒前
岁月轮回发布了新的文献求助10
16秒前
科研通AI2S应助Llt采纳,获得10
17秒前
20秒前
21秒前
21秒前
21秒前
22秒前
焦头鹅发布了新的文献求助10
23秒前
Cactus应助研友_Ze2vV8采纳,获得20
23秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756864
求助须知:如何正确求助?哪些是违规求助? 3300242
关于积分的说明 10113026
捐赠科研通 3014778
什么是DOI,文献DOI怎么找? 1655705
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753552