Deep Multimodal Transfer Learning for Cross-Modal Retrieval

计算机科学 学习迁移 人工智能 模式 不相交集 模态(人机交互) 深度学习 知识转移 集合(抽象数据类型) 构造(python库) 领域(数学分析) 机器学习 情态动词 情报检索 自然语言处理 社会学 程序设计语言 高分子化学 化学 数学分析 组合数学 知识管理 社会科学 数学
作者
Liangli Zhen,Peng Hu,Xi Peng,Rick Siow Mong Goh,Joey Tianyi Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 798-810 被引量:48
标识
DOI:10.1109/tnnls.2020.3029181
摘要

Cross-modal retrieval (CMR) enables flexible retrieval experience across different modalities (e.g., texts versus images), which maximally benefits us from the abundance of multimedia data. Existing deep CMR approaches commonly require a large amount of labeled data for training to achieve high performance. However, it is time-consuming and expensive to annotate the multimedia data manually. Thus, how to transfer valuable knowledge from existing annotated data to new data, especially from the known categories to new categories, becomes attractive for real-world applications. To achieve this end, we propose a deep multimodal transfer learning (DMTL) approach to transfer the knowledge from the previously labeled categories (source domain) to improve the retrieval performance on the unlabeled new categories (target domain). Specifically, we employ a joint learning paradigm to transfer knowledge by assigning a pseudolabel to each target sample. During training, the pseudolabel is iteratively updated and passed through our model in a self-supervised manner. At the same time, to reduce the domain discrepancy of different modalities, we construct multiple modality-specific neural networks to learn a shared semantic space for different modalities by enforcing the compactness of homoinstance samples and the scatters of heteroinstance samples. Our method is remarkably different from most of the existing transfer learning approaches. To be specific, previous works usually assume that the source domain and the target domain have the same label set. In contrast, our method considers a more challenging multimodal learning situation where the label sets of the two domains are different or even disjoint. Experimental studies on four widely used benchmarks validate the effectiveness of the proposed method in multimodal transfer learning and demonstrate its superior performance in CMR compared with 11 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxhzsdvv完成签到,获得积分10
刚刚
2秒前
Maxine完成签到 ,获得积分10
3秒前
斯文雪青完成签到,获得积分10
7秒前
8秒前
11秒前
柯南发布了新的文献求助10
12秒前
jinyue完成签到,获得积分10
15秒前
Nadine发布了新的文献求助10
17秒前
17秒前
lzx应助cnspower采纳,获得100
17秒前
英俊的铭应助还我益达采纳,获得10
19秒前
xianyu完成签到,获得积分10
20秒前
善学以致用应助简易采纳,获得10
23秒前
27秒前
huxuehong完成签到,获得积分10
27秒前
佰态完成签到,获得积分10
27秒前
柯南完成签到,获得积分10
27秒前
30秒前
30秒前
31秒前
32秒前
Joanna发布了新的文献求助10
34秒前
NexusExplorer应助Nobody采纳,获得10
34秒前
还我益达发布了新的文献求助10
34秒前
35秒前
思源应助李大爷的科研采纳,获得10
35秒前
柯一一应助gujianhua采纳,获得10
35秒前
后陡门的夏完成签到,获得积分10
35秒前
xzk发布了新的文献求助10
36秒前
37秒前
苹果笑寒发布了新的文献求助10
39秒前
baisefengche发布了新的文献求助10
39秒前
40秒前
完美世界应助爱喝水采纳,获得10
41秒前
FP发布了新的文献求助10
42秒前
优雅的雨完成签到,获得积分10
43秒前
45秒前
46秒前
47秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382