亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Multimodal Transfer Learning for Cross-Modal Retrieval

计算机科学 学习迁移 人工智能 模式 不相交集 模态(人机交互) 深度学习 知识转移 集合(抽象数据类型) 构造(python库) 领域(数学分析) 机器学习 情态动词 情报检索 自然语言处理 社会学 程序设计语言 高分子化学 化学 数学分析 组合数学 知识管理 社会科学 数学
作者
Liangli Zhen,Peng Hu,Xi Peng,Rick Siow Mong Goh,Joey Tianyi Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 798-810 被引量:48
标识
DOI:10.1109/tnnls.2020.3029181
摘要

Cross-modal retrieval (CMR) enables flexible retrieval experience across different modalities (e.g., texts versus images), which maximally benefits us from the abundance of multimedia data. Existing deep CMR approaches commonly require a large amount of labeled data for training to achieve high performance. However, it is time-consuming and expensive to annotate the multimedia data manually. Thus, how to transfer valuable knowledge from existing annotated data to new data, especially from the known categories to new categories, becomes attractive for real-world applications. To achieve this end, we propose a deep multimodal transfer learning (DMTL) approach to transfer the knowledge from the previously labeled categories (source domain) to improve the retrieval performance on the unlabeled new categories (target domain). Specifically, we employ a joint learning paradigm to transfer knowledge by assigning a pseudolabel to each target sample. During training, the pseudolabel is iteratively updated and passed through our model in a self-supervised manner. At the same time, to reduce the domain discrepancy of different modalities, we construct multiple modality-specific neural networks to learn a shared semantic space for different modalities by enforcing the compactness of homoinstance samples and the scatters of heteroinstance samples. Our method is remarkably different from most of the existing transfer learning approaches. To be specific, previous works usually assume that the source domain and the target domain have the same label set. In contrast, our method considers a more challenging multimodal learning situation where the label sets of the two domains are different or even disjoint. Experimental studies on four widely used benchmarks validate the effectiveness of the proposed method in multimodal transfer learning and demonstrate its superior performance in CMR compared with 11 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen完成签到,获得积分20
1秒前
濮阳灵竹完成签到,获得积分10
11秒前
英俊的铭应助红娘采纳,获得10
31秒前
36秒前
清脆的飞丹完成签到,获得积分10
59秒前
1分钟前
1分钟前
Allen发布了新的文献求助30
1分钟前
红娘发布了新的文献求助10
1分钟前
yingwang完成签到 ,获得积分10
1分钟前
1分钟前
红娘完成签到,获得积分10
1分钟前
1分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
笑点低的斑马完成签到,获得积分10
2分钟前
橙子完成签到 ,获得积分10
2分钟前
铭铭铭完成签到,获得积分10
2分钟前
科研通AI6应助Allen采纳,获得10
2分钟前
共享精神应助起名太难了采纳,获得10
2分钟前
2分钟前
3分钟前
taster发布了新的文献求助10
3分钟前
3分钟前
春秋发布了新的文献求助10
3分钟前
搜集达人应助taster采纳,获得10
3分钟前
3分钟前
春秋完成签到,获得积分20
3分钟前
PAIDAXXXX完成签到,获得积分10
3分钟前
困困发布了新的文献求助10
3分钟前
困困完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
顾矜应助sanner采纳,获得10
4分钟前
情怀应助Alay采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
sanner发布了新的文献求助10
4分钟前
4分钟前
Alay发布了新的文献求助10
4分钟前
科研通AI6应助sanner采纳,获得10
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232790
求助须知:如何正确求助?哪些是违规求助? 4401986
关于积分的说明 13699526
捐赠科研通 4268459
什么是DOI,文献DOI怎么找? 2342582
邀请新用户注册赠送积分活动 1339590
关于科研通互助平台的介绍 1296365