亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Multimodal Transfer Learning for Cross-Modal Retrieval

计算机科学 学习迁移 人工智能 模式 不相交集 模态(人机交互) 深度学习 知识转移 集合(抽象数据类型) 构造(python库) 领域(数学分析) 机器学习 情态动词 情报检索 自然语言处理 社会学 程序设计语言 高分子化学 化学 数学分析 组合数学 知识管理 社会科学 数学
作者
Liangli Zhen,Peng Hu,Xi Peng,Rick Siow Mong Goh,Joey Tianyi Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 798-810 被引量:48
标识
DOI:10.1109/tnnls.2020.3029181
摘要

Cross-modal retrieval (CMR) enables flexible retrieval experience across different modalities (e.g., texts versus images), which maximally benefits us from the abundance of multimedia data. Existing deep CMR approaches commonly require a large amount of labeled data for training to achieve high performance. However, it is time-consuming and expensive to annotate the multimedia data manually. Thus, how to transfer valuable knowledge from existing annotated data to new data, especially from the known categories to new categories, becomes attractive for real-world applications. To achieve this end, we propose a deep multimodal transfer learning (DMTL) approach to transfer the knowledge from the previously labeled categories (source domain) to improve the retrieval performance on the unlabeled new categories (target domain). Specifically, we employ a joint learning paradigm to transfer knowledge by assigning a pseudolabel to each target sample. During training, the pseudolabel is iteratively updated and passed through our model in a self-supervised manner. At the same time, to reduce the domain discrepancy of different modalities, we construct multiple modality-specific neural networks to learn a shared semantic space for different modalities by enforcing the compactness of homoinstance samples and the scatters of heteroinstance samples. Our method is remarkably different from most of the existing transfer learning approaches. To be specific, previous works usually assume that the source domain and the target domain have the same label set. In contrast, our method considers a more challenging multimodal learning situation where the label sets of the two domains are different or even disjoint. Experimental studies on four widely used benchmarks validate the effectiveness of the proposed method in multimodal transfer learning and demonstrate its superior performance in CMR compared with 11 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的泽洋完成签到 ,获得积分10
10秒前
爆米花应助动听葵阴采纳,获得10
20秒前
29秒前
30秒前
动听葵阴发布了新的文献求助10
35秒前
ieeat完成签到,获得积分10
1分钟前
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
huenguyenvan完成签到,获得积分10
1分钟前
GingerF应助淡然的妙芙采纳,获得50
1分钟前
慕青应助阳光小馒头采纳,获得10
1分钟前
1分钟前
远行客HB完成签到,获得积分10
1分钟前
李心雨发布了新的文献求助20
2分钟前
2分钟前
远行客HB发布了新的文献求助10
2分钟前
CodeCraft应助村上春树的摩的采纳,获得100
2分钟前
浮游应助李心雨采纳,获得10
2分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
2分钟前
英姑应助断罪残影采纳,获得10
2分钟前
3分钟前
FairyLeaf发布了新的文献求助20
3分钟前
3分钟前
3分钟前
动听葵阴发布了新的文献求助10
3分钟前
丘比特应助热情的安彤采纳,获得10
4分钟前
4分钟前
Abdurrahman完成签到,获得积分10
4分钟前
oscar完成签到,获得积分10
4分钟前
dkswy完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助泽灵采纳,获得10
4分钟前
ykssss发布了新的文献求助10
4分钟前
ykssss完成签到,获得积分10
4分钟前
4分钟前
4分钟前
宝贝丫头完成签到 ,获得积分10
5分钟前
Stata@R发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198616
求助须知:如何正确求助?哪些是违规求助? 4379557
关于积分的说明 13638287
捐赠科研通 4235728
什么是DOI,文献DOI怎么找? 2323520
邀请新用户注册赠送积分活动 1321638
关于科研通互助平台的介绍 1272661