Deep Multimodal Transfer Learning for Cross-Modal Retrieval

计算机科学 学习迁移 人工智能 模式 不相交集 模态(人机交互) 深度学习 知识转移 集合(抽象数据类型) 构造(python库) 领域(数学分析) 机器学习 情态动词 情报检索 自然语言处理 社会学 程序设计语言 高分子化学 化学 数学分析 组合数学 知识管理 社会科学 数学
作者
Liangli Zhen,Peng Hu,Xi Peng,Rick Siow Mong Goh,Joey Tianyi Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 798-810 被引量:48
标识
DOI:10.1109/tnnls.2020.3029181
摘要

Cross-modal retrieval (CMR) enables flexible retrieval experience across different modalities (e.g., texts versus images), which maximally benefits us from the abundance of multimedia data. Existing deep CMR approaches commonly require a large amount of labeled data for training to achieve high performance. However, it is time-consuming and expensive to annotate the multimedia data manually. Thus, how to transfer valuable knowledge from existing annotated data to new data, especially from the known categories to new categories, becomes attractive for real-world applications. To achieve this end, we propose a deep multimodal transfer learning (DMTL) approach to transfer the knowledge from the previously labeled categories (source domain) to improve the retrieval performance on the unlabeled new categories (target domain). Specifically, we employ a joint learning paradigm to transfer knowledge by assigning a pseudolabel to each target sample. During training, the pseudolabel is iteratively updated and passed through our model in a self-supervised manner. At the same time, to reduce the domain discrepancy of different modalities, we construct multiple modality-specific neural networks to learn a shared semantic space for different modalities by enforcing the compactness of homoinstance samples and the scatters of heteroinstance samples. Our method is remarkably different from most of the existing transfer learning approaches. To be specific, previous works usually assume that the source domain and the target domain have the same label set. In contrast, our method considers a more challenging multimodal learning situation where the label sets of the two domains are different or even disjoint. Experimental studies on four widely used benchmarks validate the effectiveness of the proposed method in multimodal transfer learning and demonstrate its superior performance in CMR compared with 11 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
囚徒完成签到,获得积分10
刚刚
斯文败类应助陈佩chenpei采纳,获得10
1秒前
1秒前
Jouleken完成签到,获得积分0
1秒前
和谐的黄豆完成签到,获得积分10
2秒前
小林子发布了新的文献求助10
2秒前
2秒前
2秒前
Jim完成签到 ,获得积分10
2秒前
3秒前
兔子发布了新的文献求助10
4秒前
Yu完成签到,获得积分20
4秒前
奋斗慕凝完成签到 ,获得积分10
4秒前
酷波er应助starts采纳,获得10
5秒前
YuenYuen完成签到,获得积分10
5秒前
儒雅无剑发布了新的文献求助10
5秒前
松山小吏完成签到,获得积分10
5秒前
5秒前
AAA苦读发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
土豪的雅柔完成签到,获得积分10
7秒前
ddd发布了新的文献求助10
7秒前
简单的听寒完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI2S应助Haru采纳,获得30
8秒前
黑章鱼保罗完成签到,获得积分10
8秒前
文静谷秋完成签到,获得积分10
9秒前
Ttttt发布了新的文献求助10
10秒前
传奇3应助姚序东采纳,获得10
10秒前
10秒前
Sy发布了新的文献求助10
10秒前
DingShicong完成签到 ,获得积分10
10秒前
11秒前
聂落雁发布了新的文献求助10
11秒前
陈木子发布了新的文献求助10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313