Deep Multimodal Transfer Learning for Cross-Modal Retrieval

计算机科学 学习迁移 人工智能 模式 不相交集 模态(人机交互) 深度学习 知识转移 集合(抽象数据类型) 构造(python库) 领域(数学分析) 机器学习 情态动词 情报检索 自然语言处理 社会学 程序设计语言 高分子化学 化学 数学分析 组合数学 知识管理 社会科学 数学
作者
Liangli Zhen,Peng Hu,Xi Peng,Rick Siow Mong Goh,Joey Tianyi Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 798-810 被引量:48
标识
DOI:10.1109/tnnls.2020.3029181
摘要

Cross-modal retrieval (CMR) enables flexible retrieval experience across different modalities (e.g., texts versus images), which maximally benefits us from the abundance of multimedia data. Existing deep CMR approaches commonly require a large amount of labeled data for training to achieve high performance. However, it is time-consuming and expensive to annotate the multimedia data manually. Thus, how to transfer valuable knowledge from existing annotated data to new data, especially from the known categories to new categories, becomes attractive for real-world applications. To achieve this end, we propose a deep multimodal transfer learning (DMTL) approach to transfer the knowledge from the previously labeled categories (source domain) to improve the retrieval performance on the unlabeled new categories (target domain). Specifically, we employ a joint learning paradigm to transfer knowledge by assigning a pseudolabel to each target sample. During training, the pseudolabel is iteratively updated and passed through our model in a self-supervised manner. At the same time, to reduce the domain discrepancy of different modalities, we construct multiple modality-specific neural networks to learn a shared semantic space for different modalities by enforcing the compactness of homoinstance samples and the scatters of heteroinstance samples. Our method is remarkably different from most of the existing transfer learning approaches. To be specific, previous works usually assume that the source domain and the target domain have the same label set. In contrast, our method considers a more challenging multimodal learning situation where the label sets of the two domains are different or even disjoint. Experimental studies on four widely used benchmarks validate the effectiveness of the proposed method in multimodal transfer learning and demonstrate its superior performance in CMR compared with 11 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YaoZhang完成签到 ,获得积分10
1秒前
赵怼怼完成签到 ,获得积分10
2秒前
所所应助小黑采纳,获得10
5秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
10秒前
檀靓完成签到,获得积分10
10秒前
kk完成签到 ,获得积分10
11秒前
英俊康乃馨完成签到 ,获得积分20
12秒前
酷酷的静芙完成签到 ,获得积分10
12秒前
12秒前
李健应助zafan采纳,获得10
12秒前
zhz发布了新的文献求助10
14秒前
可靠绮琴完成签到,获得积分10
16秒前
17秒前
纵马长歌完成签到,获得积分10
19秒前
悦耳睿渊完成签到,获得积分10
20秒前
20秒前
hhh完成签到,获得积分10
21秒前
21秒前
珍珠火龙果完成签到 ,获得积分10
22秒前
无的发布了新的文献求助10
22秒前
24秒前
滴滴滴发布了新的文献求助10
25秒前
可爱的函函应助章山蝶采纳,获得10
26秒前
英姑应助岳岳岳采纳,获得10
27秒前
蜡笔小z完成签到 ,获得积分10
27秒前
阳娅丽发布了新的文献求助10
27秒前
隐形曼青应助聂难敌采纳,获得10
27秒前
可靠夜绿关注了科研通微信公众号
28秒前
29秒前
30秒前
30秒前
orixero应助老高采纳,获得10
31秒前
安诺完成签到,获得积分10
32秒前
顾矜应助苏苏采纳,获得10
32秒前
香蕉觅云应助rachell采纳,获得10
32秒前
32秒前
滴滴滴完成签到,获得积分10
34秒前
怕黑的樱完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301