已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Multimodal Transfer Learning for Cross-Modal Retrieval

计算机科学 学习迁移 人工智能 模式 不相交集 模态(人机交互) 深度学习 知识转移 集合(抽象数据类型) 构造(python库) 领域(数学分析) 机器学习 情态动词 情报检索 自然语言处理 社会学 程序设计语言 高分子化学 化学 数学分析 组合数学 知识管理 社会科学 数学
作者
Liangli Zhen,Peng Hu,Xi Peng,Rick Siow Mong Goh,Joey Tianyi Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 798-810 被引量:48
标识
DOI:10.1109/tnnls.2020.3029181
摘要

Cross-modal retrieval (CMR) enables flexible retrieval experience across different modalities (e.g., texts versus images), which maximally benefits us from the abundance of multimedia data. Existing deep CMR approaches commonly require a large amount of labeled data for training to achieve high performance. However, it is time-consuming and expensive to annotate the multimedia data manually. Thus, how to transfer valuable knowledge from existing annotated data to new data, especially from the known categories to new categories, becomes attractive for real-world applications. To achieve this end, we propose a deep multimodal transfer learning (DMTL) approach to transfer the knowledge from the previously labeled categories (source domain) to improve the retrieval performance on the unlabeled new categories (target domain). Specifically, we employ a joint learning paradigm to transfer knowledge by assigning a pseudolabel to each target sample. During training, the pseudolabel is iteratively updated and passed through our model in a self-supervised manner. At the same time, to reduce the domain discrepancy of different modalities, we construct multiple modality-specific neural networks to learn a shared semantic space for different modalities by enforcing the compactness of homoinstance samples and the scatters of heteroinstance samples. Our method is remarkably different from most of the existing transfer learning approaches. To be specific, previous works usually assume that the source domain and the target domain have the same label set. In contrast, our method considers a more challenging multimodal learning situation where the label sets of the two domains are different or even disjoint. Experimental studies on four widely used benchmarks validate the effectiveness of the proposed method in multimodal transfer learning and demonstrate its superior performance in CMR compared with 11 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
re发布了新的文献求助20
1秒前
1秒前
aiine发布了新的文献求助30
3秒前
唐小刚完成签到,获得积分10
3秒前
左耳东发布了新的文献求助30
4秒前
徐猫猫完成签到,获得积分20
6秒前
yyc发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
10秒前
徐猫猫发布了新的文献求助10
11秒前
YOGA1115完成签到,获得积分10
11秒前
yangyajie发布了新的文献求助10
11秒前
12秒前
zjky6r发布了新的文献求助10
12秒前
大方海燕发布了新的文献求助10
12秒前
田様应助FUNG采纳,获得10
13秒前
斯文败类应助kevin1018采纳,获得10
13秒前
14秒前
re完成签到,获得积分10
15秒前
YOGA1115发布了新的文献求助10
15秒前
Bdcy完成签到 ,获得积分10
15秒前
16秒前
沐梓完成签到,获得积分10
16秒前
Ali990323完成签到,获得积分10
17秒前
yoo完成签到,获得积分10
17秒前
彭仲康完成签到 ,获得积分10
17秒前
17秒前
AAA发布了新的文献求助10
18秒前
19秒前
harmon发布了新的文献求助10
20秒前
思源应助大方海燕采纳,获得10
21秒前
22秒前
小巧尔蓝完成签到,获得积分10
23秒前
科研小白完成签到,获得积分10
23秒前
DI发布了新的文献求助10
23秒前
alabala完成签到,获得积分10
24秒前
22222发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339