离群值
自回归模型
蒙特卡罗方法
系列(地层学)
职位(财务)
计算机科学
估计
时间序列
数学
点(几何)
统计
算法
计量经济学
工程类
古生物学
系统工程
财务
经济
生物
几何学
标识
DOI:10.1007/978-3-642-57338-5_1
摘要
In this paper we introduce a method for efficient and robust estimation of the unknown parameters of an autoregressive-moving average model based on weighted likelihood. Two types of outliers, i.e. additive and innovation, are taken into account without knowing their number, position or intensity. A new procedure is used to classify the outliers and to bound the impact of additive outliers in order to improve the breakdown point of the method. Two examples and a Monte Carlo simulation are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI