亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Syntactic Features for Protein-Protein Interaction Extraction.

计算机科学 自然语言处理 解析 人工智能 信息抽取 支持向量机 语义学(计算机科学) 树(集合论) 代表(政治) 关系抽取 意义(存在) 程序设计语言 数学分析 政治 法学 数学 心理治疗师 政治学 心理学
作者
Rune Sætre,Kenji Sagae,Jun’ichi Tsujii
摘要

Background: Extracting Protein-Protein Interactions (PPI) from research papers is a way of translating information from English to the language used by the databases that store this information. With recent advances in automatic PPI detection, it is now possible to speed up this process considerably. Syntactic features from different parsers for biomedical English text are readily available, and can be used to improve the performance of such PPI extraction systems. Results: A complete PPI system was built. It uses a deep syntactic parser to capture the semantic meaning of the sentences, and a shallow dependency parser to improve the performance further. Machine learning is used to automatically make rules to extract pairs of interacting proteins from the semantics of the sentences. The results have been evaluated using the AImed corpus, and they are better than earlier published results. The F-score of the current system is 69.5% for cross-validation between pairs that may come from the same abstract, and 52.0% when complete abstracts are hidden until final testing. Automatic 10-fold cross-validation on the entire AImed corpus can be done in less than 45 minutes on a single server. We also present some previously unpublished statistics about the AImed corpus, and a short analysis of the AImed representation language. Conclusions: We present a PPI extraction system, using different syntactic parsers to extract features for SVM with Tree Kernels, in order to automatically create rules to discover protein interactions described in the molecular biology literature. The system performance is better than other published systems, and the implementation is freely available to anyone who is interested in using the system for academic purposes. The system can help researchers quickly discover reported PPIs, and thereby increasing the speed at which databases can be populated and novel signaling pathways can be constructed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
9秒前
10秒前
13秒前
李爱国应助哈哈哈哈采纳,获得10
15秒前
Weilu完成签到 ,获得积分10
16秒前
小妖发布了新的文献求助10
16秒前
19秒前
21秒前
才疏学浅完成签到,获得积分20
22秒前
PPD发布了新的文献求助10
28秒前
30秒前
Lz555完成签到 ,获得积分10
34秒前
37秒前
39秒前
40秒前
zly完成签到 ,获得积分0
44秒前
44秒前
小蓝发布了新的文献求助30
55秒前
57秒前
倒逆之蝶发布了新的文献求助10
1分钟前
跳跃毒娘发布了新的文献求助10
1分钟前
1分钟前
欢欢完成签到,获得积分20
1分钟前
领导范儿应助独特的鹅采纳,获得10
1分钟前
欢欢发布了新的文献求助10
1分钟前
yuqian发布了新的文献求助10
1分钟前
ding应助欢欢采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
开放青旋应助科研通管家采纳,获得10
1分钟前
开放青旋应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34举报江经纬求助涉嫌违规
1分钟前
斯文的硬币完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664093
求助须知:如何正确求助?哪些是违规求助? 4857445
关于积分的说明 15107133
捐赠科研通 4822538
什么是DOI,文献DOI怎么找? 2581527
邀请新用户注册赠送积分活动 1535744
关于科研通互助平台的介绍 1493963