Syntactic Features for Protein-Protein Interaction Extraction.

计算机科学 自然语言处理 解析 人工智能 信息抽取 支持向量机 语义学(计算机科学) 树(集合论) 代表(政治) 关系抽取 意义(存在) 程序设计语言 数学分析 政治 法学 数学 心理治疗师 政治学 心理学
作者
Rune Sætre,Kenji Sagae,Jun’ichi Tsujii
摘要

Background: Extracting Protein-Protein Interactions (PPI) from research papers is a way of translating information from English to the language used by the databases that store this information. With recent advances in automatic PPI detection, it is now possible to speed up this process considerably. Syntactic features from different parsers for biomedical English text are readily available, and can be used to improve the performance of such PPI extraction systems. Results: A complete PPI system was built. It uses a deep syntactic parser to capture the semantic meaning of the sentences, and a shallow dependency parser to improve the performance further. Machine learning is used to automatically make rules to extract pairs of interacting proteins from the semantics of the sentences. The results have been evaluated using the AImed corpus, and they are better than earlier published results. The F-score of the current system is 69.5% for cross-validation between pairs that may come from the same abstract, and 52.0% when complete abstracts are hidden until final testing. Automatic 10-fold cross-validation on the entire AImed corpus can be done in less than 45 minutes on a single server. We also present some previously unpublished statistics about the AImed corpus, and a short analysis of the AImed representation language. Conclusions: We present a PPI extraction system, using different syntactic parsers to extract features for SVM with Tree Kernels, in order to automatically create rules to discover protein interactions described in the molecular biology literature. The system performance is better than other published systems, and the implementation is freely available to anyone who is interested in using the system for academic purposes. The system can help researchers quickly discover reported PPIs, and thereby increasing the speed at which databases can be populated and novel signaling pathways can be constructed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cyyyy完成签到,获得积分10
刚刚
汤圆完成签到,获得积分10
1秒前
Ff完成签到 ,获得积分10
1秒前
huhdcid发布了新的文献求助10
2秒前
Jasper应助罗九九采纳,获得10
4秒前
5秒前
5秒前
6秒前
远古遗迹完成签到,获得积分10
7秒前
7秒前
摆烂完成签到 ,获得积分10
8秒前
酷波er应助nate采纳,获得10
9秒前
八个脑袋发布了新的文献求助10
9秒前
六六完成签到 ,获得积分10
10秒前
10秒前
11秒前
musicyy222发布了新的文献求助10
11秒前
bcl发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
府中园马发布了新的文献求助10
15秒前
shadinganchun完成签到,获得积分10
15秒前
Agoni完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
领导范儿应助如沐春风的采纳,获得10
18秒前
科研通AI6应助zzhh采纳,获得30
19秒前
水瓶完成签到,获得积分10
19秒前
kiki发布了新的文献求助10
20秒前
桐桐应助府中园马采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
我是老大应助清风采纳,获得10
23秒前
烙饼发布了新的文献求助20
24秒前
24秒前
25秒前
Hello应助优美的梦松采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533498
求助须知:如何正确求助?哪些是违规求助? 4621711
关于积分的说明 14580035
捐赠科研通 4561794
什么是DOI,文献DOI怎么找? 2499622
邀请新用户注册赠送积分活动 1479350
关于科研通互助平台的介绍 1450588