Syntactic Features for Protein-Protein Interaction Extraction.

计算机科学 自然语言处理 解析 人工智能 信息抽取 支持向量机 语义学(计算机科学) 树(集合论) 代表(政治) 关系抽取 意义(存在) 程序设计语言 心理学 数学分析 数学 政治 政治学 法学 心理治疗师
作者
Rune Sætre,Kenji Sagae,Jun’ichi Tsujii
摘要

Background: Extracting Protein-Protein Interactions (PPI) from research papers is a way of translating information from English to the language used by the databases that store this information. With recent advances in automatic PPI detection, it is now possible to speed up this process considerably. Syntactic features from different parsers for biomedical English text are readily available, and can be used to improve the performance of such PPI extraction systems. Results: A complete PPI system was built. It uses a deep syntactic parser to capture the semantic meaning of the sentences, and a shallow dependency parser to improve the performance further. Machine learning is used to automatically make rules to extract pairs of interacting proteins from the semantics of the sentences. The results have been evaluated using the AImed corpus, and they are better than earlier published results. The F-score of the current system is 69.5% for cross-validation between pairs that may come from the same abstract, and 52.0% when complete abstracts are hidden until final testing. Automatic 10-fold cross-validation on the entire AImed corpus can be done in less than 45 minutes on a single server. We also present some previously unpublished statistics about the AImed corpus, and a short analysis of the AImed representation language. Conclusions: We present a PPI extraction system, using different syntactic parsers to extract features for SVM with Tree Kernels, in order to automatically create rules to discover protein interactions described in the molecular biology literature. The system performance is better than other published systems, and the implementation is freely available to anyone who is interested in using the system for academic purposes. The system can help researchers quickly discover reported PPIs, and thereby increasing the speed at which databases can be populated and novel signaling pathways can be constructed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸葛带你做分析_yorfir完成签到,获得积分0
刚刚
sally发布了新的文献求助10
1秒前
科目三应助小蔡采纳,获得10
1秒前
半夏黄良完成签到,获得积分10
3秒前
4秒前
华仔应助YujieWu采纳,获得10
5秒前
星辰大海应助昏迷树袋熊采纳,获得10
5秒前
大模型应助ei采纳,获得10
5秒前
6秒前
9秒前
jackie发布了新的文献求助10
9秒前
领导范儿应助miao采纳,获得10
10秒前
小蔡发布了新的文献求助10
12秒前
传奇3应助123采纳,获得10
12秒前
13秒前
香蕉觅云应助jackie采纳,获得10
13秒前
realtimes完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
ED应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
CAOHOU应助科研通管家采纳,获得10
16秒前
16秒前
凉凉应助科研通管家采纳,获得10
17秒前
17秒前
踏实的大地完成签到,获得积分10
18秒前
Hello应助研友_Zbb4mZ采纳,获得10
22秒前
23秒前
叶子关注了科研通微信公众号
24秒前
minmi完成签到,获得积分10
26秒前
领导范儿应助胡广采纳,获得10
28秒前
希望天下0贩的0应助hahaha采纳,获得10
28秒前
柚子街发布了新的文献求助10
29秒前
30秒前
31秒前
33秒前
行走的绅士完成签到,获得积分10
34秒前
JamesPei应助mmol采纳,获得10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023842
求助须知:如何正确求助?哪些是违规求助? 3563836
关于积分的说明 11343764
捐赠科研通 3295164
什么是DOI,文献DOI怎么找? 1814969
邀请新用户注册赠送积分活动 889615
科研通“疑难数据库(出版商)”最低求助积分说明 813048