亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Syntactic Features for Protein-Protein Interaction Extraction.

计算机科学 自然语言处理 解析 人工智能 信息抽取 支持向量机 语义学(计算机科学) 树(集合论) 代表(政治) 关系抽取 意义(存在) 程序设计语言 心理学 数学分析 数学 政治 政治学 法学 心理治疗师
作者
Rune Sætre,Kenji Sagae,Jun’ichi Tsujii
摘要

Background: Extracting Protein-Protein Interactions (PPI) from research papers is a way of translating information from English to the language used by the databases that store this information. With recent advances in automatic PPI detection, it is now possible to speed up this process considerably. Syntactic features from different parsers for biomedical English text are readily available, and can be used to improve the performance of such PPI extraction systems. Results: A complete PPI system was built. It uses a deep syntactic parser to capture the semantic meaning of the sentences, and a shallow dependency parser to improve the performance further. Machine learning is used to automatically make rules to extract pairs of interacting proteins from the semantics of the sentences. The results have been evaluated using the AImed corpus, and they are better than earlier published results. The F-score of the current system is 69.5% for cross-validation between pairs that may come from the same abstract, and 52.0% when complete abstracts are hidden until final testing. Automatic 10-fold cross-validation on the entire AImed corpus can be done in less than 45 minutes on a single server. We also present some previously unpublished statistics about the AImed corpus, and a short analysis of the AImed representation language. Conclusions: We present a PPI extraction system, using different syntactic parsers to extract features for SVM with Tree Kernels, in order to automatically create rules to discover protein interactions described in the molecular biology literature. The system performance is better than other published systems, and the implementation is freely available to anyone who is interested in using the system for academic purposes. The system can help researchers quickly discover reported PPIs, and thereby increasing the speed at which databases can be populated and novel signaling pathways can be constructed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
丁元英发布了新的文献求助10
11秒前
采薇发布了新的文献求助10
14秒前
18秒前
姚俊88888888完成签到 ,获得积分10
20秒前
liuminghui发布了新的文献求助10
25秒前
liuminghui完成签到 ,获得积分20
46秒前
1分钟前
1分钟前
采薇发布了新的文献求助10
1分钟前
爱静静完成签到,获得积分0
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得30
2分钟前
我是老大应助b_采纳,获得10
2分钟前
平常的苡完成签到,获得积分10
2分钟前
2分钟前
乐乐应助cxwong采纳,获得10
2分钟前
奋斗灵波发布了新的文献求助10
2分钟前
2分钟前
Estrange发布了新的文献求助10
2分钟前
3分钟前
领导范儿应助Estrange采纳,获得10
3分钟前
林思完成签到,获得积分10
3分钟前
Orange应助采薇采纳,获得10
3分钟前
完美世界应助勤劳的西西采纳,获得10
3分钟前
3分钟前
3分钟前
光亮曼云发布了新的文献求助10
3分钟前
Estrange发布了新的文献求助10
3分钟前
桐桐应助光亮曼云采纳,获得10
3分钟前
Artin完成签到,获得积分10
3分钟前
Estrange完成签到,获得积分10
4分钟前
4分钟前
采薇发布了新的文献求助10
4分钟前
wild发布了新的文献求助10
4分钟前
4分钟前
b_发布了新的文献求助10
4分钟前
4分钟前
cxwong发布了新的文献求助10
4分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244737
求助须知:如何正确求助?哪些是违规求助? 2888410
关于积分的说明 8252844
捐赠科研通 2556864
什么是DOI,文献DOI怎么找? 1385423
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626269