亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Syntactic Features for Protein-Protein Interaction Extraction.

计算机科学 自然语言处理 解析 人工智能 信息抽取 支持向量机 语义学(计算机科学) 树(集合论) 代表(政治) 关系抽取 意义(存在) 程序设计语言 数学分析 政治 法学 数学 心理治疗师 政治学 心理学
作者
Rune Sætre,Kenji Sagae,Jun’ichi Tsujii
摘要

Background: Extracting Protein-Protein Interactions (PPI) from research papers is a way of translating information from English to the language used by the databases that store this information. With recent advances in automatic PPI detection, it is now possible to speed up this process considerably. Syntactic features from different parsers for biomedical English text are readily available, and can be used to improve the performance of such PPI extraction systems. Results: A complete PPI system was built. It uses a deep syntactic parser to capture the semantic meaning of the sentences, and a shallow dependency parser to improve the performance further. Machine learning is used to automatically make rules to extract pairs of interacting proteins from the semantics of the sentences. The results have been evaluated using the AImed corpus, and they are better than earlier published results. The F-score of the current system is 69.5% for cross-validation between pairs that may come from the same abstract, and 52.0% when complete abstracts are hidden until final testing. Automatic 10-fold cross-validation on the entire AImed corpus can be done in less than 45 minutes on a single server. We also present some previously unpublished statistics about the AImed corpus, and a short analysis of the AImed representation language. Conclusions: We present a PPI extraction system, using different syntactic parsers to extract features for SVM with Tree Kernels, in order to automatically create rules to discover protein interactions described in the molecular biology literature. The system performance is better than other published systems, and the implementation is freely available to anyone who is interested in using the system for academic purposes. The system can help researchers quickly discover reported PPIs, and thereby increasing the speed at which databases can be populated and novel signaling pathways can be constructed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助步念采纳,获得30
4秒前
Ava应助查莉采纳,获得10
13秒前
清晨仪仪发布了新的文献求助10
39秒前
麻辣香锅发布了新的文献求助10
54秒前
科研通AI6应助CC采纳,获得10
1分钟前
李李爱种花完成签到 ,获得积分10
1分钟前
1分钟前
查莉发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助麻辣香锅采纳,获得10
1分钟前
1分钟前
2分钟前
小萌兽完成签到 ,获得积分10
2分钟前
ysy完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
直率的青寒完成签到,获得积分10
3分钟前
宝石完成签到,获得积分10
4分钟前
null应助ceeray23采纳,获得20
4分钟前
5分钟前
ceeray23发布了新的文献求助20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
羞涩的傲菡完成签到,获得积分10
5分钟前
6分钟前
nssanc完成签到,获得积分10
6分钟前
linlinlin发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
FashionBoy应助linlinlin采纳,获得10
6分钟前
十一完成签到 ,获得积分10
6分钟前
QQWRV完成签到,获得积分10
6分钟前
6分钟前
CC发布了新的文献求助10
7分钟前
ceeray23发布了新的文献求助20
7分钟前
威武千青发布了新的文献求助20
7分钟前
8分钟前
Mrzrgh完成签到,获得积分10
8分钟前
钱邦国完成签到 ,获得积分10
8分钟前
小乐儿~完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622233
求助须知:如何正确求助?哪些是违规求助? 4707262
关于积分的说明 14938986
捐赠科研通 4769501
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475041