Syntactic Features for Protein-Protein Interaction Extraction.

计算机科学 自然语言处理 解析 人工智能 信息抽取 支持向量机 语义学(计算机科学) 树(集合论) 代表(政治) 关系抽取 意义(存在) 程序设计语言 数学分析 政治 法学 数学 心理治疗师 政治学 心理学
作者
Rune Sætre,Kenji Sagae,Jun’ichi Tsujii
摘要

Background: Extracting Protein-Protein Interactions (PPI) from research papers is a way of translating information from English to the language used by the databases that store this information. With recent advances in automatic PPI detection, it is now possible to speed up this process considerably. Syntactic features from different parsers for biomedical English text are readily available, and can be used to improve the performance of such PPI extraction systems. Results: A complete PPI system was built. It uses a deep syntactic parser to capture the semantic meaning of the sentences, and a shallow dependency parser to improve the performance further. Machine learning is used to automatically make rules to extract pairs of interacting proteins from the semantics of the sentences. The results have been evaluated using the AImed corpus, and they are better than earlier published results. The F-score of the current system is 69.5% for cross-validation between pairs that may come from the same abstract, and 52.0% when complete abstracts are hidden until final testing. Automatic 10-fold cross-validation on the entire AImed corpus can be done in less than 45 minutes on a single server. We also present some previously unpublished statistics about the AImed corpus, and a short analysis of the AImed representation language. Conclusions: We present a PPI extraction system, using different syntactic parsers to extract features for SVM with Tree Kernels, in order to automatically create rules to discover protein interactions described in the molecular biology literature. The system performance is better than other published systems, and the implementation is freely available to anyone who is interested in using the system for academic purposes. The system can help researchers quickly discover reported PPIs, and thereby increasing the speed at which databases can be populated and novel signaling pathways can be constructed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴大王完成签到,获得积分10
2秒前
思源应助冷傲的靖雁采纳,获得10
3秒前
3秒前
Dr_Zhan完成签到 ,获得积分10
5秒前
文刀刘完成签到 ,获得积分10
6秒前
研友_85rJEL完成签到 ,获得积分10
8秒前
8秒前
小通通完成签到 ,获得积分10
8秒前
领导范儿应助数星星采纳,获得10
9秒前
棒呆了咸蛋超女完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
杨利英完成签到 ,获得积分10
9秒前
7分运气完成签到,获得积分10
9秒前
Yynnn完成签到 ,获得积分10
10秒前
10秒前
12秒前
zwjhbz完成签到,获得积分10
13秒前
科研通AI6.1应助陈龙采纳,获得10
13秒前
赵儒浩发布了新的文献求助10
13秒前
14秒前
15秒前
fyukgfdyifotrf完成签到,获得积分10
15秒前
共享精神应助懒洋洋采纳,获得10
17秒前
拼死拼活完成签到,获得积分10
18秒前
林林完成签到 ,获得积分10
18秒前
hhh发布了新的文献求助10
19秒前
19秒前
20秒前
22秒前
终极007完成签到 ,获得积分10
22秒前
安宁完成签到 ,获得积分10
23秒前
清秀书兰完成签到 ,获得积分10
23秒前
彭于晏应助赵儒浩采纳,获得10
23秒前
曾俊宇完成签到 ,获得积分10
23秒前
23秒前
25秒前
zx发布了新的文献求助10
25秒前
拼死拼活发布了新的文献求助10
25秒前
26秒前
给我好好读书完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838