A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation

维纳过程 预言 过程(计算) 期望最大化算法 滤波器(信号处理) 维纳滤波器 降级(电信) 算法 计算机科学 数学优化 工程类 数学 数据挖掘 统计 最大似然 电信 计算机视觉 操作系统
作者
Xiaosheng Si,Wenbin Wang,Chang Hua Hu,Mao-Yin Chen,Dong-Hua Zhou
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:35 (1-2): 219-237 被引量:405
标识
DOI:10.1016/j.ymssp.2012.08.016
摘要

Remaining useful life estimation (RUL) is an essential part in prognostics and health management. This paper addresses the problem of estimating the RUL from the observed degradation data. A Wiener-process-based degradation model with a recursive filter algorithm is developed to achieve the aim. A novel contribution made in this paper is the use of both a recursive filter to update the drift coefficient in the Wiener process and the expectation maximization (EM) algorithm to update all other parameters. Both updating are done at the time that a new piece of degradation data becomes available. This makes the model depend on the observed degradation data history, which the conventional Wiener-process-based models did not consider. Another contribution is to take into account the distribution in the drift coefficient when updating, rather than using a point estimate as an approximation. An exact RUL distribution considering the distribution of the drift coefficient is obtained based on the concept of the first hitting time. A practical case study for gyros in an inertial navigation system is provided to substantiate the superiority of the proposed model compared with competing models reported in the literature. The results show that our developed model can provide better RUL estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木今完成签到,获得积分10
1秒前
ebangdeng完成签到,获得积分10
1秒前
1111发布了新的文献求助10
1秒前
张子儒发布了新的文献求助10
1秒前
丘比特应助顺利雁桃采纳,获得10
1秒前
星辰大海应助过儿采纳,获得10
1秒前
qiuxue完成签到,获得积分10
1秒前
充电宝应助细腻代真采纳,获得10
1秒前
威武绝山发布了新的文献求助10
1秒前
俭朴新之发布了新的文献求助10
1秒前
2秒前
称心的海蓝完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
玄叶发布了新的文献求助20
2秒前
2秒前
科研通AI2S应助韩梅采纳,获得10
2秒前
脑洞疼应助栖木采纳,获得10
4秒前
4秒前
dddd完成签到,获得积分10
4秒前
5秒前
5秒前
chennx完成签到,获得积分10
6秒前
哈密瓜发布了新的文献求助10
7秒前
7秒前
浮游应助zou采纳,获得10
7秒前
7秒前
7秒前
阳佟水蓉完成签到,获得积分10
8秒前
克林发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
浮游应助说话请投币采纳,获得10
9秒前
9秒前
过儿完成签到,获得积分10
9秒前
10秒前
能干的荆完成签到 ,获得积分10
10秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907